Vowel hiatus resolution in Kikuyu ${ }^{1}$
Jackson Kuzmik \& Mary Paster
Pomona College

1. Introduction

This paper describes vowel hiatus resolution (VHR) in Kikuyu (E.51, Kenya), presenting new data to fill gaps in previous descriptions (especially the very comprehensive Armstrong 1940; see also Mugane 1997) and address divergence from those descriptions. We present a rule-based account; for an OT analysis of aspects of this system, see Kuzmik (2020).
(1) Kikuyu vowel features

	$/ i /$	$/ e /$	$/ \varepsilon /$	$/ a /$	$/ \partial /$	$/ o /$	$/ u /$
$[\pm$ high $]$	+	-	-	-	-	-	+
$[\pm$ low]	-	-	-	+	-	-	-
$[\pm$ ATR $]$	+	+	-	-	-	+	+
$[\pm$ back]	-	-	-	+	+	+	+
$[\pm$ round $]$	-	-	-	-	+	+	+

A variety of factors determine the surface form when vowels come together across a word or morpheme boundary (see Casali 2011 for discussion of the various factors that influence VHR outcomes across languages):

(2) Factors in Kikuyu VHR outcomes

V_{1} quality \& length
V_{2} quality \& length
presence/quality/length of V preceding V_{1}
presence/type of C (velar vs. non-velar) preceding V_{1}
V vs. C following V_{2}
presence/quality/length of V following V_{2}
presence/type of C (nasal vs. oral) following V_{2}
boundary type between V_{1} and V_{2} (morpheme vs. word)

We will discuss these factors later but will start by focusing on VHR in a subset of possible contexts: $\mathrm{V}_{1}+\mathrm{V}_{2}$ across a word boundary where V_{1} is preceded by a non-velar C and V_{2} is followed by an oral C.
2. Description of vowel hiatus resolution patterns

The table below summarizes the surface forms corresponding to input $\mathrm{V}_{1}+\mathrm{V}_{2}$ combinations in this context (gray shaded boxes indicate surface forms that differ from Armstrong's description):

(3) Short $\mathbf{V}_{\mathbf{1}}+$ Short $\mathbf{V}_{\mathbf{2}}$

$\mathrm{V}_{1} \downarrow \quad \mathrm{~V}_{2} \rightarrow$	i	e	ε	a	\bigcirc	\bigcirc	u
i	ii	ie	i ε	ia	iد	io	iu
e	ei	ee	eє	ea	eכ	eo	eu
ε	$\varepsilon \chi^{1}$	عє	عє	ea	еכ	ео	еэі
a	ai	عє	$\varepsilon \varepsilon$	aa	כ	כ	วі
\bigcirc	วі	оє	оє	эа	כ	כ	วі
0	oi	oe	O\&	oa	$0 \bigcirc$	оо	ou
u	ui	ue	u ε	ua	uง	uo	uu

[^0]Below are examples of combinations of short vowels that undergo a quality change in this context. The slow speech form is given on the left and fast speech on the right. We assume that slow speech reflects the underlying form in terms of V quality, though not in all details (e.g., tone).
(4) $\quad \mathbf{V}_{1}+\mathrm{V}_{\mathbf{2}}$ combinations that undergo quality change (slow speech \rightarrow fast speech)

a.	$\varepsilon+\mathrm{e} \rightarrow \varepsilon \varepsilon$		\rightarrow		'the cow went'
		jòrògé étékà	\rightarrow	jòrògććtékà	'Njoroge, answer!'
b.	$\varepsilon+\mathrm{a} \rightarrow$ ea	dj̀ònìrદ́ áđùùrì	\rightarrow	dj̀j̀nìréáðúúrì	'I saw the elders'
		dòkààrèkè áhóóṫ̇	\rightarrow	dòkààrèkèàhóótè	'don't let her get hungry'
		dèztìré átùmíà	\rightarrow	dèztìréátùmíà	'I called the women (rem. past)'
		rèkè ádiè	\rightarrow	rèkéádiè	'let him go'
c.	$\varepsilon+ว \rightarrow$ eכ	kàmààdદ́ ว́hà	\rightarrow	kàmààdéכ́hà	'Kamande, tie!'
		kàmààdદ́ ${ }^{\text {óyà }}$	\rightarrow	kàmààdéכ́yà	'Kamande, lift!'
d.	$\varepsilon+\mathrm{o} \rightarrow$ eo		\rightarrow	jj jójkèòtòc̀jè	'then shave us'
			\rightarrow	nààwéóyékúúdźkáyć	'and you continue tying...'
e.	$\varepsilon+$ u \rightarrow еэі	jòrògé úyà	\rightarrow	jòrògéכ́ì̧à	'Njoroge, say something!'
		kàmààdé úyà	\rightarrow	kàmààdéכ́íyà	'Kamande, say something!'
f.	$\mathrm{a}+\mathrm{e} \rightarrow \varepsilon \varepsilon$	nyààbùrá étékà	\rightarrow	nyààbùrćztékà	'Nyambura, answer!'
		wásíírá ètékà	\rightarrow	wáfírrèz̀tékà	'Waciira, answer!'
g.	$\mathrm{a}+\varepsilon \rightarrow \varepsilon \varepsilon$	nyààbùrá غ̀hérà	\rightarrow	nyààbùrćé'hérà	'Nyambura, stand aside!'
		wáfíirá èhérà	\rightarrow	wáfíŕćs'hérà	'Waciira, stand aside!'
h.	$a+\rho \rightarrow \supset$	tààtà óyà	\rightarrow	tààtóśyà	'Aunt, lift!'
		nyààbùrá óhà	\rightarrow	nyààbùrój́hà	'Nyambura, tie!'
i.	$a+0 \rightarrow$ כ	tààtà óyó	\rightarrow	tààtòj̀yó	'this aunt'
		nyòògò yá òfòrò	\rightarrow	nyòògò yóófòrò	'porridge pot'
		mòđદ́nyà ófì	\rightarrow	mòđźnyว̀j̧fís	'that day'
		nà òrćદ́hè	\rightarrow	nòว̀f́દ́hè	'and bring...'
j.	$\mathrm{a}+\mathrm{u} \rightarrow$ دi	tààtà úyà	\rightarrow	tààtóǐyà	'Aunt, say something!'
		bùrá úrà	\rightarrow	bùróìrà	'rain, come down!'
k.	${ }^{\text {J }}$ + \rightarrow Oع	móyó étékà	\rightarrow	móyóćtékà	'Mũgo, answer!'
		gèkj̀nyó étékà	\rightarrow	gèkònyóćtékà	'GĨkonyo, answer!'
I.	${ }+\varepsilon$ ¢ 0ε	gèkJ̀nyó źhérà	\rightarrow	gèkJ̀nyóźhérà	'Gĩkonyo, stand aside!'
		bj̀¢ゝ̀ દ́hérà	\rightarrow	bòyòźhérà	'Mbogo, stand aside!'
m.	$\bigcirc+0 \rightarrow$ -	mòtàró ófío	\rightarrow	mòtàróşfí	'that drain'
		gèkònyś óhèyà	\rightarrow	gèkJ̀nyóśhèyà	'Gĩkonyo, be smart!'
n .	د+u \rightarrow गi	gèkònyó ú̧à	\rightarrow	gèkònyó'íyà	'Gĩkonyo, say something!'
		bòyò úyà	\rightarrow	bj̀yóí̧à	'Mbogo, say something!'

Note that there are some differences from Armstrong. First, Armstrong states (p.23) that $0+a$ yields oa, though the
 his greatest friends...' Our speaker replicated this example with $\supset+a a \rightarrow$ دa (à $\begin{aligned} & \text { è̀ètá wáđiòmò ááke } \rightarrow \text { àyèètá }\end{aligned}$ wádí̀mòàke; see below for more on $\mathrm{V}+\mathrm{V}$: sequences). For our speaker, $\jmath+a$ yields $\jmath a$:

$$
\begin{array}{llll}
\text { (5) } \quad \text { j+a } \rightarrow \text { วa } & \rightarrow & \text { mòỳ̀ỳ̀ áyáyá } & \text { 'these Mũgos' } \\
& \rightarrow & \text { móyj́árìà } & \text { 'Mũgo, speak!' }
\end{array}
$$

Second, where our speaker changes $\varepsilon+o$ sequences to $e o$, Armstrong reports eJ. Some forms from our speaker (replicated from (4d)) are given below:

Compare with Armstrong's examples (p. 20):
(7) a. Armstrong's examples with $\varepsilon+0 \rightarrow e \mathrm{e}$

b. Forms replicated by our speaker with $\varepsilon+0 \rightarrow e o$

mòféźrè óyó \rightarrow mòfźćrèòyó 'this rice'

tóhé òhój́rérí nà đààyò \rightarrow tóhéóhóórćrí nà đààyò 'grant us tranquility and peace'

Another difference is that Armstrong states (p.24) that [oo] is 'in most cases impossible' (occurring only in forms where [0] is the passive suffix), so $0+0$ surfaces as [$\mathrm{u} \boldsymbol{0}$]. The examples she cites are single words (infinitive prefix + stem), including the following (replicated with our speaker and with tone marking added):
(8) o+o \rightarrow uว /ko-эya/ \rightarrow kùòyá 'to lift'
(within words) /ko-эha/ $\quad \rightarrow \quad$ kú̀̀há 'to tie up'
Across word boundaries, $o+\jmath$ surfaces unchanged for our speaker (but optionally undergoes glide formation; see below):

A final discrepancy in combinations of short vowels is that for our speaker, $o+u$ and $e+u$ sequences surface as ou, $e u$ rather than undergoing mid V raising as reported by Armstrong:

a.	$\mathrm{o}+\mathrm{u} \rightarrow \mathrm{ou}$	wàjikó úyà	\rightarrow	wàjíkóúyà	'Wanjikũ, say something!
		kèmààrò úyà	\rightarrow	kèmààroúyà	'Kĩmarũ, say something!'
b.	$\mathrm{e}+\mathrm{u} \rightarrow \mathrm{eu}$	gèjóhè úyà	\rightarrow	gèJóhèúyà	'Gĩcũhĩ, say something!'
		kèvàkè úmà	\rightarrow	kèvàkèúmà	'Kībakĩ, come out!'

As with $o+0$, for $o+u$ Armstrong provides examples (p.24) where this sequence does change (to $u u$) within words, as it does for our speaker within words (examples in (11a) are replicated from Armstrong with tone marking added). Additionally, though Armstrong provides examples of $e+u$ changing to $i u$ both within and across words, we only find evidence for this change within words (11b):

a.	$\mathrm{o}+\mathrm{u} \rightarrow \mathrm{uu}$ (within words)	/to-uy-ir- ε / /ko-uy-a/	$\begin{align*} & \rightarrow \tag{11}\\ & \rightarrow \end{align*}$	tùùyíré kùùyá	'we said (today)' 'to say something
b.	$\mathrm{e}+\mathrm{u} \rightarrow \mathrm{iu}$ (within word)	/n-ge-um-a/ /n-ge-uy-a/	$\begin{aligned} & \rightarrow \\ & \rightarrow \end{aligned}$	giúmà giúyà	'I came out' 'I said something'

Armstrong cites the example njoke uma \rightarrow njokiuma 'Njũkĩ, come out!' (p. 24) with $e+u$ surfacing as iu across a word boundary, but our speaker produces this form with eu (jòké 'úmà \rightarrow jòké'úmà).

3. Generalizations and rules accounting for core vowel hiatus resolution patterns

This section gives generalizations and rules to account for all observed patterns in the context we are focusing on (combinations of short vowels across word boundaries).

We assume autosegmental theory but present SPE-style rules as a shorthand except where autosegmental representations are crucial to understanding a pattern.

When a [-ATR] mid V_{1} precedes its [+ATR] counterpart as $\mathrm{V}_{2}, \mathrm{~V}_{2}$ assimilates to [-ATR] ($\varepsilon e, \supset 0 \rightarrow \varepsilon \varepsilon$, כว):
(12) V \rightarrow [-ATR] / V
[-high, -low, +ATR, aback]
[-high, -low, -ATR, aback]
It is crucial that the rule applies only when the vowels agree in backness, since [-ATR][+ATR] input sequences with vowels disagreeing in backness ($\lrcorner e, \varepsilon o$) do not behave this way. Input $\varepsilon+o$ changes to $e o$, as follows:
(13) V $\rightarrow \quad$ [+ATR] / $\quad \mathrm{V}$
[-high, -low, -ATR, -back] [-high, -low, +ATR, +back]
On the other hand, $\boldsymbol{\nu + e}$ surfaces as $o \varepsilon$. We account for $\nu e \rightarrow o \varepsilon$ in two steps. First, $\nu e \rightarrow \nu \varepsilon$, as follows:
V

[-high, -low, + ATR, -back] $\rightarrow \quad$ [-ATR] \quad| [-high, -low, -ATR, +back] |
| :--- |

Then, $\nu \varepsilon \rightarrow o \varepsilon$ via a general rule that changes a [-ATR] mid vowel to [+ATR] when followed by a [-ATR] mid vowel $(\varepsilon\lrcorner \rightarrow$ $e \jmath$, and $\supset \varepsilon \rightarrow o \varepsilon$):
$\begin{array}{lll}\text { (15) } \\ & \mathrm{C} \text {-high, -low, -ATR] }\end{array} \quad \rightarrow \quad$ [+ATR] $\quad / \quad-\quad V \quad \begin{aligned} & \text { [-high, -low, -ATR] }\end{aligned}$
Note that these two steps cannot be reversed to yield $\boldsymbol{J} \rightarrow o \varepsilon$, since if $\supset e$ first changed to $o e$, we would have no motivation for e lowering to ε (the input sequence $o+e$ surfaces as $o e$, not $o \varepsilon$).

Note also that on this analysis with an intermediate stage $\jmath \varepsilon$, the [+ATR] feature that surfaces on the $[0$] in $\nu e \rightarrow[0 \varepsilon]$ is not the same instance of the [+ATR] feature that was present on the input/e/.

A final point to note about (15) is that although it only affects sequences where the two vowels disagree in backness/ roundness, this does not have to be stated in the rule because we assume that $/ \varepsilon+\varepsilon /$ and $/ \omega+\rho /$ fuse into a single long V (via a fusion rule, $\mathrm{V}_{i}+\mathrm{V}_{i} \rightarrow \mathrm{~V}_{i}$:) prior to the application of (15) (thereby preventing $\varepsilon+\varepsilon$, $\supset+\supset$ from changing to $e \varepsilon, o ว$).

In $\varepsilon+a$ sequences, ε raises to e, yielding ea:

$$
\begin{array}{llllll}
\mathrm{V} \tag{16}\\
{[\text {-high, -low, -ATR, -back] }} & \rightarrow & {[+A T R]} & / & \mathrm{V} \\
{[+ \text { low] }}
\end{array}
$$

The rule needs to be specific to [-back] vowels since $\jmath+a$ does not change to oa.

When a precedes any mid vowel, it assimilates to [-low] and to the backness/roundness of the triggering vowel while retaining its [-ATR] feature (so $a+o$ and $a+כ$ surface as $כ ว$, while $a+e$ and $a+\varepsilon$ surface as $\varepsilon \varepsilon$):
(17) $\underset{[+ \text { low] }}{\mathrm{V}} \rightarrow \quad$ [-low, aback, around] / $\quad{ }^{\text {[-high, -low, aback, } \alpha \text { round] }}$

This rule feeds the rule in (12) (which changes εe, วo to $\varepsilon \varepsilon, כ ว$), so we account for $a+e \rightarrow \varepsilon \varepsilon$ in two steps (a+e $\rightarrow \varepsilon \mathrm{e} \rightarrow \varepsilon \varepsilon$).
Some unusual changes apply to $\bigvee_{1}+u$ sequences where V_{1} is [-high, -ATR]: $\varepsilon u \rightarrow e \jmath i, a u \rightarrow \nu i$, and $\supset u \rightarrow \supset i$. In all cases, u undergoes dipthongization, changing to \boldsymbol{J}, via the rule in (18). Dashed circles indicate inserted items, though [-back] and [-round] may be inserted by default rather than by this rule.

Following the change of u to $\boldsymbol{\jmath}$, further rules apply to the triggering V . ε raises to e via the independently needed rule in (15). ν and a are deleted, and since both also delete before $כ \boldsymbol{J}$ as shown below, we hypothesize that a single rule causes deletion before both כ כ and $\boldsymbol{\jmath}$ (i.e., deletion occurs before any $\mathrm{V} V$ (including a single long V) where the first is $\boldsymbol{\nu}$).

$$
\begin{equation*}
a+\supset \supset \rightarrow \text { ná j́ótì } \quad \rightarrow \quad \text { nóótì } \tag{19}
\end{equation*}
$$

$$
\text { כ + כ } \rightarrow \text { כ כ } \quad \text { gèkj̀nyó j́ónìrદ̀ } \quad \rightarrow \quad \text { gèkònyóónìrદ̀ } \quad \text { 'Gĩkonyo saw (something)' }
$$

We can formulate this deletion rule as applying only to \jmath, since $a \rightarrow ว / \ldots \quad$ via the rule in (17), which feeds (20):
(20) $\quad \supset \rightarrow \varnothing / \ldots \quad$ V

4. Other factors/contexts affecting vowel hiatus resolution

In this section we discuss some complications to the core pattern, based on the factors/contexts identified in (2).

4.1 Segment preceding V_{1}

A vowel preceding the $\mathrm{V}_{1}+\mathrm{V}_{2}$ sequence can affect the outcome of hiatus resolution. For example, Armstrong reports (p . 22) that input $i \varepsilon+a$ surfaces as ia with the ε elided. Normally $\varepsilon+a$ surfaces as ea (see above), so deletion of ε from $i \varepsilon+a$ is conditioned by i. We have not investigated 3 -vowel sequences systematically, so it is unclear how general the deletion rule is (in terms of which specific vowels undergo or trigger it). This is a matter for future research. ${ }^{2}$

A consonant preceding the $\mathrm{V}_{1}+\mathrm{V}_{2}$ sequence affects hiatus resolution in terms of whether glide formation (GF) applies to V_{1} (see Kuzmik 2020 for further analysis of glide formation).

Generally, GF can apply to o, changing it to w when it precedes any vowel except o or u. It is sometimes optional but is obligatory for some forms (we have not yet determined when it is obligatory vs. optional):

[^1]| a. | $\begin{equation*} \underset{\sim}{\mathrm{o}+\mathrm{i}} \rightarrow \underset{\sim_{\mathrm{oi}}}{\mathrm{wii}} \tag{21} \end{equation*}$ | wàjikó íkòmí | \rightarrow | wàjìkwíikòmí ~ wàjikòíkòmí | 'ten Wanjikũs' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{o}+\mathrm{e} \rightarrow \text { wee }$ ~oe | wàjikó étékà | \rightarrow | wàjikwéétékà ~ wàjìkóétékà | 'Wanjikũ, answer!' |
| | $\begin{array}{r} \mathrm{o}+\varepsilon \rightarrow \mathrm{w} \varepsilon \varepsilon \\ \sim_{\mathrm{O}} \mathrm{f} \end{array}$ | wàjikó ćhérà | \rightarrow | wàjikwと́と́hźrà ~ wàjìkóćhźrà | 'Wanjikũ, stand aside!' |
| | $\mathrm{o}+\mathrm{a} \rightarrow \underset{\sim}{\text { waa }}$ | wàjikó áyá | \rightarrow | wàjikwááyá
 ~ wàjìkóáyá | 'these Wanjikũs' |
| | $\underset{\sim}{\text { wo כo }}$ | wàjíkó óhà | \rightarrow | wàjíkwóşhà
 ~ wàjíkóóhà | 'Wanjikũ, tie!' |
| b. | $\begin{array}{r} \mathrm{o}+\mathrm{o} \rightarrow \mathrm{ooo}_{\text {woo }} \end{array}$ | wàjikó òyò | \rightarrow | wàjikóóyó *wajikwooyo | 'this Wanjikũ' |
| | $\mathrm{o}+\mathrm{u} \rightarrow \mathrm{ou}$
 *wuu | wàjikó úyà | \rightarrow | wàjíkóúyà
 *wajikwuuya | 'Wanjikũ, say something!' |

GF can also apply to o derived via raising of \supset before ε (so GF is ordered after V raising):

${ }^{\nu}+\varepsilon \rightarrow \mathrm{o} \mathrm{\varepsilon}(\rightarrow \mathrm{w} \varepsilon \varepsilon)$	húkó ćhérà	\rightarrow	húkw $\varepsilon ́ h \varepsilon ́ r ́ a ̀ ~$ ~húkóćhérà	'mole, stand aside!'
	mèhèèdó èná	\rightarrow	mèhèèdwżદ̀nà ~ mèhè̀èdòz̀nà	'four ropes'
	jòmò ćhérà	\rightarrow	jว̀mwéź'hérà ~ jòmó ́'h $^{\prime}$ rà	'Njomo, stand aside!'

Some vowels other than o also undergo GF, but less robustly. In contrast to Mugane's report (1997: 9) that i and u do not undergo GF, i does undergo GF in some cases, but apparently only before u :

a.	mwààgi úmà	\rightarrow	mwààgyúúmà *mwaagiuma	'Mwangi, come out!'
	mwààgì úyà	\rightarrow	mwààgyúúyà *mwaagiuya	'Mwangi, say something!'
	wààbití úyà	\rightarrow	wààbìtyúúyà ~ wààbitiúyà	'Wambiti, say something!'
	gèđèèjí úyà	\rightarrow	gèðèèjyúúyà ~ gèđèèjíúyà	'Gĩthĩnji, say something!'
	kàriòkí úyà	\rightarrow	kàríòkyúúyà ~ kàríòkiúyà	‘Kariũki, say something!
	kèmání úmà	\rightarrow	kèmányúúmà ~ kèmánílúmà	'Kĩmani, come out!'
	kàyj̀jí úqà	\rightarrow	kàyòs'yúúyà ~ kàyว̀j’'úrà	'Kagoci, say something!'
	kàrémí úyà	\rightarrow	kàrém'yúúyà ~ kàrémiúyà	'Karĩmi, say something!'
b.	mwààgì íkòmí	\rightarrow	mwààíkòmí *mwaagyiikomi	'ten Mwangis'
	mwààgì étékà	\rightarrow	mwààgìtékà *mwàagyèètékà	'Mwangi, answer!'

mwààgì ćhźrà	\rightarrow	mwààgí́hźrà *mwaagyechera	'Mwangi, stand aside!'
mwààgì áyá	\rightarrow	mwààgàyá *mwaagyaaya	'these Mwangis'
mwààgì óhà	\rightarrow	mwààgíh'hà *mwaagyo	'Mwangi, tie!'
mwààgì òyò	\rightarrow	mwààgòyó *mwaagyooyo	'this Mwangi'

Similarly, u seems to undergo glide formation most readily before $i(24 a)$, though it also applies before non-round vowels (24b). We do not have examples of it applying before ν, o, or u (24c):

a.	kàrúúgú íkòmí	\rightarrow	kàrùùgwì̀kòmí *karuuguikomi	'ten Karungus'
	màfùkù ìkòmí	\rightarrow	màfùkwìikòmí *mafukuikomi	'ten books'
	kààbútú íkòmí	\rightarrow	kààbútwíikòmí *kààbútúíkòmí	'ten Kambutus'
b.	kàrúúgú étékà	\rightarrow	kàrúúgwèètékà ~ kàrúúgùètékà	'Karungu, answer!'
	kàrúúgú ćhérà	\rightarrow	kàrúúgwéźhèrà ~ kàrúúgúć'hérà	'Karungu, stand aside!'
	kàrúúgú àtáánó	\rightarrow	kàrùùgwààtáánó ~ kàrùùgùàtáánó	'five Karungus'
C.	kàrúúgú óhà	\rightarrow	kàrúúgùśhà *karuugwosha	'Karungu, tie!'
	kàrúúgú óyó	\rightarrow	kàrùùgùòyó *karuugwooyo	'this Karungu'
	kàrúúgú úyà	\rightarrow	kàrúúgùúyà *karuugwuuya	'Karungu, say something!'

We have observed a small number of instances of e undergoing GF:
(25)

a.	kèvàkè èhérà	\rightarrow	kèvàky ε ć'hźrà ~ kèvàkèć'hèrà	'Kĩbakĩ, stand aside!'
	kèvàkè áyá	\rightarrow	kèvàkyààyá ~ kèvàkèàyá	'these Kĩbakĩs'
	gèfòké áyá	\rightarrow	gèjòkyááyá ~ gèjòkéáyá	'these GĨcũkĩs'
	kèvàkè óhà	\rightarrow	kèvàkyóśhà ~ kèvàkèóhà	'Kĩbakĩ, tie!'
	kèvàkè óyó	\rightarrow	kèvàkyòòyó ~ kèvàkèòyó	'this Kĩbakĩ'
	gè òké $^{\text {òyò }}$	\rightarrow	gèjòkyóóyó ~ gèjòkéóyó	'this Gĩcũkĩ'
	kèvàkè úyà	\rightarrow	kèvàkyúúyà ~ kèvàkèúyà	'Kĩbakĩ, say something!'

b．kèvàkè étékà	\rightarrow	kèvàkèètékà ＊kevakyeeteka	＇Kĩbakĩ，answer！＇
kèvàkè íkòmí	\rightarrow	kèvàkéíkòmí ＊kevakyiikomi	＇ten Kĩbakĩs＇

Other forms with e as V_{1} fail to undergo GF：

（26）	gèjóhè úzà	\rightarrow	gèjóhèúyà ＊geJohyuuya	‘Gicũhĩ，say something！＇
	gàré úyà	\rightarrow	gàré＇úyà ＊garyuuya	＇Ngarĩ，say something！＇
	mòtè ófío	\rightarrow	mòtèojfí ＊motyoofio	＇that tree＇
	gèjòké ćh＇̇́rà	\rightarrow	gèjòkéć＇hérà ＊gejokyzとhとra	＇Gĩcũkĩ，stand aside！＇
	gèjòké óhà	\rightarrow	gèjòké＇כ́hà ＊gefokyoدha	‘Gĩcũkĩ，tie！＇
	gèjòké úyà	\rightarrow	gèjòké＇úrà ＊geJokyuuya	‘Gicũkĩ，say something！’

Mugane（1997：10）reports mũtyũcio for＇［that］tree＇，implying［motyofio］although presumably the o after the glide is lengthened；our speaker rejects the form with GF for that phrase，as seen in（26）．

Note also in comparing（25）with（26）that the final V of the name Gĩcũkĩ variably undergoes GF，seemingly depending on the following V but with no clear phonological generalization．

The preceding C（if any）affects the likelihood of GF application．A preceding k seems to make GF most likely，but it can apply after other consonants：

／k／	màfùkù ìkòmí	\rightarrow	màfùkwìikòmí（＊mafukuikomi）
／g／	kàrúúgú íkòmí	\rightarrow	kàrùùgwì̀kòmí（＊karuuguikomi）
／t／	wààbití úyà	\rightarrow	wààbìtyúúyà～wààbitíúyà
／d／	mòhéédò étékà	\rightarrow	mòhéédòz̀tékà～mòhéédwżદ̀tékà
／d3／	gèðèèjí úyà	\rightarrow	gèðèèjyúúyà～gèðèèjíúyà
／J／	kàyう̀jí úyà	\rightarrow	
／r／	gèfòrò ónà	\rightarrow	gèfòròónà～gè ${ }^{\text {àr }}$ wóכ́nà
／m／	wàirìmó áyá	\rightarrow	wàirìmwááyá～wàirìmóáyá
／n／	kèmání úmà	\rightarrow	kèmányúúmà～kèmání＇úmà
／n／	dòònó íkòmí	\rightarrow	dòònwí́kòmí～dòònòíkòmí

The following consonants preceding the target V appear to inhibit or block GF：

（28）	／8／	bòyう̀ ćhérà	\rightarrow	bj̀yòźhérà（＊bJywechera）	＇Mbogo，stand aside！＇
	／J／	gèfó étèkà	\rightarrow	gèjóétékà（ ${ }^{\text {g g }}$ Jweeteka）	＇Ngecũ，answer！＇
	／ð／	kèmòðò ćhérà	\rightarrow	kèmう̀ðòćhćrà（＊kemっđweとhera）	＇Kĩmotho，stand aside！＇
	／h／	mòhóhò é＇hérà	\rightarrow	mòhóhòz̀hérà（＊mohohwechera）	＇Mũhoho，stand aside！＇（name is pronounced like Mũhũhũ）
	／r／	mòđúúrí úyà	\rightarrow	mòđúúriúyà（＊mođuuryuura）	＇elder，say something！＇
	／ny／	gèkj̀nyó ćhćrà	\rightarrow	gèkj̀nyóćhćrà（＊gekonywechera）	＇Gĩkonyo，stand aside！＇
	／y／	wàmóyò étèkà	\rightarrow	wàmóyòétèkà（＊wamoyweeteka）	＇Wamũyũ，answer！＇

Notice that some consonants (r, \cap) appear on both lists. While a preceding r does not inhibit GF applying to 0 , it does seem to inhibit GF applying to i (our consultant attributed this to the fact that the sequence $r w$ sounds natural to him but $r y$ does not). Conversely, while GF does apply to i after \int, it seems to be inhibited from applying to o in this context.

4.2 Segment following \mathbf{V}_{2}

Another V following V_{2} can affect hiatus resolution in ways we have not systematically studied. One instance where we saw this was in the examples above involving changes to a V followed by \jmath vs. by $\supset V$. Recall that the changes in (29) apply when a or 3 precedes a short \supset :

$a \rightarrow 0 / \ldots 0$	tààtà óyà	\rightarrow	tààtóśyà
	nyààbùrá óhà	\rightarrow	nyààbùróśhà
$\nu+\nu \rightarrow$ כ	gèkj̀nyó óhà	\rightarrow	gèkj̀nyóśhà
	mòyò óyà	\rightarrow	mó'róśyà

'Aunt, lift!'
'Nyambura, tie!'
‘Gĩkonyo, tie!'
'Mũgo, lift!'
On the other hand, these vowels are deleted when followed by oi or ככ:

$\mathrm{a} \rightarrow \varnothing / \ldots \ldots$ эi tààtà ú úzà	\rightarrow	tààtóìzà
(from /u/) bùrá úrà	\rightarrow	bùróirà
ว $\rightarrow \varnothing$ / __ دi gèkònyó úyà	\rightarrow	gèkònyó'íyà
(from /u/) bj̀yò úyà	\rightarrow	bj̀yóíyà
$a \rightarrow \varnothing / \ldots \ldots$ no jóstì	\rightarrow	nóว́ti
	\rightarrow	gèkònyכ́כ́nìrè

'Aunt, say something!'
'rain, come down!'
'Gĩkonyo, say something!’
'Mbogo, say something!'
'... and baskers'
'Gĩkonyo saw (something)'
We leave further study of effects of a vowel following the $V_{1}+V_{2}$ sequence to future research.
A nasal C following V_{2} can obscure the effects of hiatus resolution. $\mathrm{A}[+\mathrm{ATR}]$ mid vowel followed by a nasal is, to us, auditorily very similar to its [-ATR] counterpart (i.e., o and e sound like Ω, ε before a nasal). The ATR contrast is not neutralized before nasals, but due to the confusability of vowels in this context, we have avoided forms with nasals following the $\mathrm{V}+\mathrm{V}$ sequence where possible in this study.

4.3 Boundary type between V_{1} and V_{2} (morpheme vs. word)

Earlier we saw examples where the type of boundary (morpheme vs. word) between the two vowels results in different hiatus resolution effects. In the case of word boundaries, the type of syntactic boundary has not proved significant; the effects seem to apply across word boundaries anywhere within the clause (though not across clauses in an utterance).

In discussion of differences between our description and Armstrong's, we saw that while $0+0$ surfaces as 0 across a word boundary, it changes to u within words across a morpheme boundary. Similarly, while $o+u$ surfaces as ou across a word boundary, it changes to $u u$ across a morpheme boundary, and $e+u$ surfaces as eu across a word boundary but as iu across a morpheme boundary.

In addition, e+o surfaces as eo across a word boundary but as io across a morpheme boundary:

a.	e+o \rightarrow eo (across words)	mòtè óyó	\rightarrow	mòtè̀yó	'this tree'
		mòtè òfía	\rightarrow	mòtè̀Jíá	'that tree'
		né ótà	\rightarrow	néótà	'it's a bow'
		né ótùkò	\rightarrow	néótùkò	'it's night'
b.	e+o \rightarrow io	/n-ke-ok-a/	\rightarrow	giókà	'I came'
	(within words)	/n-ke-or-a/	\rightarrow	giórà	'I got lost'

Interestingly, Armstrong (p. 24) reports no change to $e+o$ even within words (cf. クgeoka ‘ I came').
The differences between the across-word vs. within-word contexts shows that there are some hiatus resolution rules that apply at the lexical level but not post-lexically:

(32) Additional VHR rules that apply only lexically

a. $\quad \mathrm{o} \rightarrow \mathrm{u} / \ldots \mathrm{J}$
b. $\quad \mathrm{o} \rightarrow \mathrm{u} / \ldots \mathrm{u}$
c. $\quad \mathrm{e} \rightarrow \mathrm{i} / \ldots \mathrm{u}$
d. $\quad \mathrm{e} \rightarrow \mathrm{i} / \ldots \mathrm{o}$

Rules ($32 \mathrm{~b}-\mathrm{c}$) can be collapsed into a single rule:

$$
\begin{equation*}
\text { [-high, -low, +ATR] } \rightarrow \text { [+high] / __ [+high, +back] } \tag{33}
\end{equation*}
$$

Note that this rule has to be limited to applying before a [+back] vowel since i does not trigger raising (oi, ei do not change to ui, ii within words; cf. /ko-ikár-à/ \rightarrow yòikàrà 'to stay', /n-ke-ikar-a/ \rightarrow gèikárá 'I stayed').

It is also not possible to write rules raising o, e before all [+back, +round] vowels because o does not raise before o (though this could be explained via the fusion of $0+0 \rightarrow o$: applying before raising) and e does not raise before $\boldsymbol{\nu}$ (eכ \rightarrow e both within and across word boundaries; cf. /n-ke-כh-a/ \rightarrow géśhà ‘I tied’).

4.4 Vowel length

Armstrong provides few examples of combinations involving long vowels, tending to lump them in with combinations of short vowels despite the fact that they behave somewhat differently, as we show below.

The table below shows combinations of a short V_{1} with a long V_{2} across a word boundary (gray shading indicates differences from Armstrong; question marks indicate combinations we have been unable to elicit):

(34) Short $\mathbf{V}_{\mathbf{1}}+$ Long $\mathbf{V}_{\mathbf{2}}$							
$\mathrm{V}_{1} \downarrow \mathrm{~V}_{2} \rightarrow$	ii	ee	$\varepsilon \varepsilon$	aa	ว	OO	uu
i	ii	ie	i ε	ia	iว	io	iun
e	eii	ee	eє	ea	eכ	eo	euu
ε	عii	$\varepsilon \varepsilon$	$\varepsilon \varepsilon$	ea	еכ	ео	عuu
a	aii	عє	$\varepsilon \varepsilon$	aa	ว	כ	auu
\bigcirc	?	оє	Oع	эа	ว	כ	?
0	?	oe	оع	oa	$\bigcirc \bigcirc$	$\bigcirc 0$?
u	?	?	u ε	ua	แว	uo	?

One sytematic difference between our description and Armstrong's concerns the behavior of $\mathrm{V}+\mathrm{V}$: sequences where the vowels have identical quality. Armstrong reports (p.12) that these surface as 'very long' (e.g., meteeerea 'those trees') but we consistently find long vowels in this context that sound the same as other long vowels, not 'very long' (e.g., mètè ééréá \rightarrow mètèèréá 'those trees').

Another difference concerns long vowels following o. Armstrong suggests (pp. 23-24) that all vowels except short \boldsymbol{v} and u surface unchanged after 0 , implying that long vowels are not shortened in this context, and specifically states ($\mathrm{fn} .1, \mathrm{p}$. 24) that ' [wov] and [wuu] (we cannot confirm this since Armstrong cites no examples) and that these may result from a two-step
process of shortening and GF (which re-lengthens the V), e.g., $0+כ \rightarrow 0 \rightarrow$ כ \rightarrow. Otherwise, we have no explanation for why vowels would systematically fail to shorten after O, which happens to be the only V that consistently undergoes GF.

A final discrepancy involves whether long ee and oo undergo shortening. In our data, ee and oo shorten after another V. According to Armstrong, however, د+ee fails to undergo shortening, surfacing as see or oعє (p. 21) (e.g., meheend seerea \rightarrow meheendočrea 'those ropes'), e+oo surfaces as eoo (p.20) (e.g., mayua me ooke \rightarrow mayua meooke 'honeycombs contain honey'), and $\varepsilon+o o$ surfaces as $\varepsilon o o$ or eכ (p.20) (e.g., moceعrع oorea \rightarrow moceعreכコea 'that rice'). As seen in (35), our speaker produces these sequences as $o \varepsilon, e o$, and $e o$, respectively.

Most long vowels as V_{2} undergo shortening, and most $\mathrm{V}+\mathrm{V}$: combinations have surface forms identical to the corresponding $\mathrm{V}+\mathrm{V}$ combinations:
(35) Sequences with long $\mathbf{V}_{\mathbf{2}}$ where the surface form is identical to sequence with short $\mathbf{V}_{\mathbf{2}}$

$\begin{aligned} & \mathrm{i}+\mathrm{ii} \rightarrow \mathrm{ii} \\ & \mathrm{i}+\mathrm{ee} \rightarrow \mathrm{ie} \end{aligned}$	tí íijí émòz	\rightarrow	tíijí émòz	'this is not one inch'
	mèirí èèréá	\rightarrow	mè̀ríéréá	'those P. africana trees'
	gààrí èèréá	\rightarrow	gààriéréá	'that car'
$i+\varepsilon \varepsilon \rightarrow \mathrm{i} \varepsilon$	kèmàní ććtìŕ	\rightarrow	kèmàníctìré	'Kimani called'
	tí ćéyà	\rightarrow	tíc̀yà	'they (people) are not good'
$\mathrm{i}+\mathrm{aa} \rightarrow \mathrm{ia}$	kèmàní áányว̀níré	\rightarrow	kèmàníányòníré	'Kĩmani saw me'
$\mathrm{i}+\mathrm{\nu} \rightarrow \mathrm{i}$	kèmàní óónìré	\rightarrow	kèmànínniré	'Kĩmani saw (something)'
$\mathrm{i}+\mathrm{oo} \rightarrow$ io	mòđùùrì òòréá	\rightarrow	mòđùùrìòréá	'that elder'
$\mathrm{e}+\mathrm{ee} \rightarrow$ ee	mètè ééréá	\rightarrow	mètèèréá	'those trees'
	gàré èèréá	\rightarrow	gàrééréá	'that leopard'
$\mathrm{e}+\varepsilon \varepsilon \rightarrow \mathrm{e} \varepsilon$	gè ${ }^{\text {ćhè }}$ ع́ćtirć	\rightarrow	gèJóhèźtìré	'Gĩcũhĩ called'
	né c̀z̀yà	\rightarrow	néc̀yà	'they (people) are good'
$\mathrm{e}+\mathrm{aa} \rightarrow$ ea	gèjóhè áányònírè	\rightarrow	gèjóhèányònírè	'GĨcũhĩ saw me’
	gèfóhè áárèjnnírè	\rightarrow	gè ${ }^{\text {ćhèárèj̀nírè }}$	'GĨcũhĩ saw it (cl. 5)'
$e+$ ¢ \rightarrow ev	gèjóhè j́ónìré	\rightarrow	gèJóhèźnìré	'GĨcũhĩ saw (something)'
$\mathrm{e}+\mathrm{oo} \rightarrow$ eo	gèjóhè òòréá	\rightarrow	gèJóhè̀orréá	'that Gĩcũhĩ'
	mòtè óóréá	\rightarrow	mòtèòréá	'that tree'
$\varepsilon+\mathrm{ee} \rightarrow \varepsilon \varepsilon$	ŋj̀j̀bદ̀ èèréá	\rightarrow	Øj̀̀̀bèżréá	'that cow'
$\varepsilon+\varepsilon \varepsilon \rightarrow \varepsilon \varepsilon$	วónc̀ètદ́ દ̀દ̀kí	\rightarrow	j́ว́nc̀z̀tććkì	's/he saw doers'
$\varepsilon+\mathrm{aa} \rightarrow$ ea	mònèné áányònírè	\rightarrow	mònènéányònírè	'the boss saw me'
	jว̀rògé áányònírè	\rightarrow	jòrògéányònírè	'Njoroge saw me'
$\varepsilon+\supset \supset \rightarrow$ eכ	mwèèrદ́ ડ́jık̇	\rightarrow	mwèèréว́kè	'tell him to come'
	j́ว́nc̀ètદ́ j̀òtí	\rightarrow	j́ว́nc̀z̀téótì	's/he saw baskers'
$\varepsilon+\mathrm{oo} \rightarrow$ eo	mò ${ }^{\text {ććrcè }}$ òòréá	\rightarrow	mòfźźrèòréá	'that rice'
	né déétc̀ óòké	\rightarrow	né déétèòkè	'I have eaten honey’
$\mathrm{a}+\mathrm{ee} \rightarrow \varepsilon \varepsilon$	mèkààdá èèréá	\rightarrow	mèkààdźćréá	'those ropes'
$\mathrm{a}+\varepsilon \varepsilon \rightarrow \varepsilon \varepsilon$	ná ććkì	\rightarrow	nććkì	'... and doers'
	nà દ̀દ̀jánì	\rightarrow	nèc̀jánì	'... and hairdressers'
$a+\mathrm{aa} \rightarrow \mathrm{aa}$	nyààbùrá áányònírè	\rightarrow	nyààbùráányònírè	'Nyambura saw me'
$a+\nu \square$	ná óótì	\rightarrow	nóว́tì	'... and baskers'
	nà jòbí	\rightarrow	nj̀jbí	'... and potters'
$a+00 \rightarrow 0$	mòrààtá òòréá	\rightarrow	mòrààtóśréá	'that friend'
	márééáyà òòké	\rightarrow	márééáyj̀jké	'they eat honey'
$\bigcirc+\mathrm{ee} \rightarrow \mathrm{o} \mathrm{\varepsilon}$	mèhèèdj̀ èèréá	\rightarrow	mèhèèdòz̀réá	'those ropes'
$\supset+\varepsilon \varepsilon \rightarrow 0 \varepsilon$	gèkJ̀nyó ććtìré	\rightarrow	gèkònyóćtìŕ́	'GĨkonyo called’

$\nu+\mathrm{aa} \rightarrow$ ว	gèkònyó áányònírè	\rightarrow	gèkònyóányònírè	'Gĩkonyo saw me’
ν + $\bigcirc \rightarrow$ כ	gèkònyó óónìrè	\rightarrow	gèkj̀nyóónìrè	'Gĩkonyo saw (something)'
Ј	gèkònyó òòréá	\rightarrow	gèkònyóóréá	'that Gĩkonyo'
$\mathrm{o}+\mathrm{ee} \rightarrow$ oe	mèđààdókò èèréá	\rightarrow	mèðààdókòèréá	'those wattle trees'
	mètìtó èèréá	\rightarrow	mètìtóéréá	'those forests'
$\bigcirc+\varepsilon \varepsilon \rightarrow 0 \varepsilon$	gèjòrò ććtìré	\rightarrow	gèjòròztìŕ	'GĨcũrũ called'
	gèfó ććtìré	\rightarrow	gèfóćtiré	'Ngecũ called'
$\mathrm{o}+\mathrm{aa} \rightarrow$ oa	gèjòrò áányònírè	\rightarrow	gèfòròányònírè	'GĨcũrũ saw me'
0 + $0 \rightarrow 0$	gèfòrò j́ว́nìré	\rightarrow	gèjòròj́nìré	'GĨcũrũ saw (something)'
$\mathrm{O}+\mathrm{OO} \rightarrow \mathrm{OO}$	gèfòrò óóréá	\rightarrow	gèjòròòréá	'that Gĩcũrũ'
$u+\varepsilon \varepsilon \rightarrow u \varepsilon$	mátú ććtìr	\rightarrow	mátúćtìré	'Matu called'
$\mathrm{u}+\mathrm{aa} \rightarrow$ ua	mátú áányònírè	\rightarrow	mátúányònírè	'Matu saw me'
u + ${ }^{\text {u }} \rightarrow$ u	mátú ój́nìrè	\rightarrow	mátúónìrè	'Matu saw (something)'
$\mathrm{u}+\mathrm{oo} \rightarrow$ uo	màtù óóréá	\rightarrow	màtùòréá	'that Matu'

In the following cases, a $\mathrm{V}+\mathrm{V}$: sequence yields a different surface form from its $\mathrm{V}+\mathrm{V}$ counterpart:

	Output w/ $\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{2}$ quality $\varepsilon+\mathrm{i}$	Output w/ long $\mathbf{V}_{\mathbf{2}}$
$\mathrm{short} \mathbf{V}_{\mathbf{2}}$		

Type of difference
mora count
mora count
mora count
mora count
mora count; application of quality change application of quality change

Representative examples are given below:
(37) Combinations where long $\mathbf{V}_{\mathbf{2}}$ yields a different surface form from short $\mathbf{V}_{\mathbf{2}}$

i + uu \rightarrow iuu	tí úúbúđé	\rightarrow	tíúúbúđé	'those are not dregs'
	tí úúmèrò	\rightarrow	tíúú'mérò	'this is not an exit'
$\mathrm{e}+\mathrm{ii} \rightarrow \mathrm{eii}$	né ííjì	\rightarrow	néíjì	'this is an inch'
	né íijìní	\rightarrow	néíijiní	'this is an engine'
$\mathrm{e}+\mathrm{uu} \rightarrow$ euu	né úúbùðè	\rightarrow	néúúbùðè	'those are dregs'
$\varepsilon+\mathrm{ii} \rightarrow \varepsilon \mathrm{ii}$	j́כ́nìré íijiní	\rightarrow	j̀j̀nìrćíjìní	's/he saw an engine'
$\varepsilon+\mathrm{uu} \rightarrow$ عuu	j̇ว́nc̀દ̀tદ́ úúgùmánía	\rightarrow	jónc̀tદ́úúgùmánía	'he saw corruption'
$\mathrm{a}+\mathrm{ii} \rightarrow$ aii	dòj̀ná íijìnì	\rightarrow	dòj̀náíjìnì	'I saw an engine'
	ná 'íijìnì	\rightarrow	ná'íijìnì	'... and an engine'
$\mathrm{a}+\mathrm{uu} \rightarrow$ auu	ná úúbùðè	\rightarrow	náùùbùðè	'... and dregs'
	nà ùùđí	\rightarrow	nàùùðí	'... and thread'

All ii-initial words we have found are borrowed, and the long ii may derive from pre-nasal lengthening. This probably does not account for the failure of shortening, however, since, as we will show below, high vowels also do not undergo shortening in V_{1} position, as non-high vowels do. Also, the long uu in words like ùùđí results from combining the cl. 14 prefix u - with an u-initial stem and still does not shorten (cf. forms in (35) with initial non-high long vowels containing the cl. 14 prefix that do shorten, such as ooke 'honey').

The failure of $i i$ and $u u$ to shorten shows that the shortening rule applies only to [-high] vowels:

A separate rule accounts for $i+i i \rightarrow i i$. In general, all sequences of $\mathrm{V}+\mathrm{V}$: where the quality of the vowels is identical surface as V :, but in the case of non-high vowels, it is not clear whether that rule or the one in (38) is responsible for shortening.

An important fact to note is that while V length can be difficult to distinguish auditorially, it is clearly the $\mathrm{V}+\mathrm{V}$: context and not simply the fast-speech context that induces shortening in word-initial long vowels, since the vowels still surface as long in isolation when elicited in fast speech:
(39) Words with initial long vowels pronounced in isolation in fast speech

iijí	'inch'	*iji
ééréá	'those (cl. 4)'	*erea
ćśtirć	'he called'	* tir ${ }^{\text {c }}$
áányว̀nírè	'he saw me'	*anyonir
jòtí	'baskers'	* ti
òòké	'honey'	*oke
úúbúđé	'dregs'	*ubuðe

The forms in (40) with $\varepsilon u u$, auu combinations show that diphthongization to i applies only to short u, not to long $u u$ (these forms cannot surface with *e ${ }^{*}$, * ${ }^{*} i$):

$\mathrm{V}:+\mathrm{V}$ combinations show significantly different behavior from $\mathrm{V}+\mathrm{V}$ and $\mathrm{V}+\mathrm{V}$: combinations. Below are combinations with a long V_{1} (Armstrong does not comment on these combinations, so no comparison is possible):

(41) Long $\mathbf{V}_{1}+$ Short \mathbf{V}_{2}

$\mathrm{V}_{1} \downarrow \quad \mathrm{~V}_{2} \rightarrow$	i	e	ε	a	\bigcirc	0	u
ii	ii	iie	ii	iia	iio	iio	iiu
ee	ei	ee	eع	ea	eว	eo	eu
$\varepsilon \varepsilon$	عi	$\varepsilon \varepsilon$	$\varepsilon \varepsilon$	عa	еכ	eo	عu
aa	ai	aعє	aعє	aa	аэง	аэง	? ${ }^{3}$
כ	วі	O\&	O\&	эа	כ	כ	эи
00 ${ }^{4}$?	?	?	?	?	?	?
uu	uui	une	uuع	uua	uиว	uuo	uu

Since shortening applies to non-high vowels before any vowel, we propose the rule below (the mirror image of (38)):

[^2]（42）

Below is a summary of differences in VHR outcomes when V_{1} is long vs．short：
$V_{1}+V_{2}$ quality
$i+V$
$u+V$
$\varepsilon+a$
$\varepsilon+u$
$a+e, a+\varepsilon$
$a+0, a+\rho$
$a+u$
$\partial+u$

Output w／	Output w／
long V_{1}	short V_{1}

Type of difference
mora count mora count application of quality change mora count；application of quality change mora count；application of quality change mora count；application of quality change mora count（？）；application of quality change mora count；application of quality change

Some of these differences can be attributed to the shortening rule in（42）applying late in the derivation，counterfeeding some of the quality changes described and analyzed in §§2－3 if we analyze those rules as applying only to short vowels． For example，ordering the $\varepsilon a \rightarrow$ ea raising rule before（42）explains the failure of raising in（44）：
＇Mũthee，be nice！＇
The mirror image shortening rule in（38），in contrast，feeds most of the quality changes，as in the following examples where the shortened V is the trigger（45a）or the target（45b）：
a．$\quad \begin{aligned} & \varepsilon+\mathrm{aa} \rightarrow \mathrm{ea} \\ & \\ & \quad+\varepsilon \varepsilon \rightarrow 0 \varepsilon\end{aligned}$
jòrògé áányว̀nírદ̀ $\quad \rightarrow \quad$ jòrògéányònírè
gèkj̀nyó ε źtìŕ $\quad \rightarrow \quad$ gèkj̀nyóćtir ε
b．

Øj̀j̀bc̀ èèréá	\rightarrow	Øj̀j̀bèz̀réá
gèkj̀nyó òòréá	\rightarrow	gèkònyóśréá
mèhèèdò èèréá	\rightarrow	mèhèèdòzréá

＇Njoroge saw me＇ ‘Gîkonyo called’

$$
\begin{aligned}
& \varepsilon+\mathrm{ee} \rightarrow \varepsilon \varepsilon \\
& \nu+\mathrm{oo} \rightarrow \partial \supset
\end{aligned}
$$

$$
\text { 〕+ee } \rightarrow \text { o } \quad \text { mèhèèdò èèréá } \quad \rightarrow \quad \text { mèhèèdò̀̀réá }
$$

$$
\begin{aligned}
& \text { 'that cow' } \\
& \text { 'that Gĩkonyo' } \\
& \text { 'those ropes' }
\end{aligned}
$$

The relative ordering of the two shortening rules also allows us to make sense of some unexpected surface forms when $a a$ is followed by a mid V ，shown below：

$\mathrm{aa}+\mathrm{e} \rightarrow \mathrm{a} \varepsilon \varepsilon$	dàà étékà	\rightarrow	dàćctèkà	＇louse，answer！＇
	báà étékà	\rightarrow	＊daeteka，＊d deteka，＊dacteka bá＇źćtèkà	＇dew，answer！＇
			＊baeteka，＊b\＆とteka，＊bacteka	
$\mathrm{aa}+\varepsilon \rightarrow \mathrm{a} \varepsilon \varepsilon$	báà ćhŕrà	\rightarrow	báżèhźrà ＊bachera，＊bechera	＇dew，stand aside！＇
$a \mathrm{a}+\mathrm{v}^{\text {a }} \mathrm{a}$ ว	báa óhà	\rightarrow	bá＇ǰ⿰㇒⿻土一⿰丿𠃌力	＇dew，tie！＇
			＊basha，＊boэha	
$\mathrm{aa}+\mathrm{o} \rightarrow$ aכ	báà ókà	\rightarrow	bá＇ǰ́kà	＇dew，come！＇
			＊baoka，＊bovka，＊baəka	

Recall that the corresponding sequences behave as follows when both vowels are short（47a）and when V_{2} is long（47b）：
a. $\quad \mathrm{a}+\mathrm{e} \rightarrow \varepsilon \varepsilon$
b. \quad a+ee $\rightarrow \varepsilon \varepsilon$
$a+\varepsilon \rightarrow \varepsilon \varepsilon$
$a+\varepsilon \varepsilon \rightarrow \varepsilon \varepsilon$
a+כ \rightarrow ว
a+כว \rightarrow ว
$a+o \rightarrow$ כ
a+oo \rightarrow כ

Our explanation for this difference is that in aa+V, the second half of the long aa interacts with the following mid V , fusing into $\varepsilon \varepsilon$ or $כ \boldsymbol{\omega}$ while the initial mora of the $a a$ remains associated to the features of a. The resulting $a+\mathrm{V}$: sequence does not undergo the rule that normally shortens non-high long vowels after another V because that rule already applied earlier in the derivation, as shown below:

(48) Derivation of /baa oka/ \rightarrow baכวka

Underlying form
Shortening of $\mathrm{V}+\mathrm{VV}$
$a+0 \rightarrow$ כ
Shortening of VV+V
Surface form

```
baa oka
N/A
baכ`ka
N/A
baээka
```

We can identify which of the VHR rules apply before vs. after $\mathrm{V}:+\mathrm{V} \rightarrow \mathrm{VV}$ based on the quality changes that do vs. do not apply in $\mathrm{V}:+\mathrm{V}$ sequences. The following rules affecting V_{1} do apply to $\mathrm{V}:+\mathrm{V}$ sequences, suggesting that they should be ordered after the rule that shortens V : before a short vowel: ${ }^{5}$

a.	$\varepsilon+\bigcirc \rightarrow$ eว	mòđč̇̇ óhà	\rightarrow	mòđé'ǰhà	'Mũthee, tie!'
b.	$\varepsilon+\mathrm{o} \rightarrow$ eo	mòðćé óyó	\rightarrow	mòđéòyó	'this Mũthee'
		mòđć̇ ó ókà	\rightarrow	mòđé'ókà	'Mũthee, come!'
c.	${ }^{\text {+ }}$ + \rightarrow oع	kànój étékà	\rightarrow	kànó'źtékà	'Kang'oo, answer!'
d.	$\bigcirc+\varepsilon \rightarrow 0$ ¢	kànó̀ ćṫદ̀rérà	\rightarrow	kànó'zt́ćř́rà	'Kang'oo, wait!'

A final discrepancy between $\mathrm{V}:+\mathrm{V}$ and $\mathrm{V}+\mathrm{V}$ that needs to be accounted for is that we do not find examples of u diphthongization following a long $\varepsilon \varepsilon, a a$, or $\supset \supset$ (even if the long vowel is later shortened):

$\varepsilon \varepsilon+u \rightarrow \varepsilon u$	mòðč̇̇ úyà	\rightarrow	mòðć'úyà	'Mũthee, say (something)!
$\mathrm{aa}+\mathrm{u} \rightarrow \mathrm{aau}$	báa úyà	\rightarrow	báá'úyà	'dew, say something!'6
			*bajǐa, *baajǐa	
$\nu \supset+u \rightarrow \nu u$	kànój úỳ̀	\rightarrow	kànó'úyà	'Kang'oo, say something!'
			*kaŋэi¢a, *kaŋээi¢а	

This suggests that the diphthongization rule is triggered specifically by a preceding short V , and that diphthongization must apply prior to the rule that shortens a long V before another V .

One last type of combinations to consider is $\mathrm{V}:+\mathrm{V}$:. These are difficult to elicit due to the scarcity of long vowels both initially and finally. The combinations we have found are consistent with our observations about other combinations involving long vowels, including that non-high vowels undergo shortening when they precede or follow a V , but high vowels do not:

$$
\begin{align*}
& \text { ii + aa } \rightarrow \text { iia kèfî áányòníŕ́ } \quad \rightarrow \quad \text { kèfííányว̀níŕ́ } \quad \text { 'fog saw me' } \tag{51}
\end{align*}
$$

[^3]| $\mathrm{ii}+כ \mathrm{~J} \rightarrow \mathrm{ii}$ | kèfî̀ óว́nìré | \rightarrow | kèfíl'כ́nìré | 'fog saw (something)' |
| :---: | :---: | :---: | :---: | :---: |
| uu $+\varepsilon \varepsilon \rightarrow$ uu | wààbúù દ́ćtìŕ | \rightarrow | wààbúú' ¢́tir | 'Wambuu called' |
| uu + aa \rightarrow uua | wààbúù áányònírè | \rightarrow | wààbúú'ányònírè | 'Wambuu saw me' |
| uu + כ \rightarrow uũ | wààbúù óónìrè | \rightarrow | wààbúú'כ́nìrè | 'Wambuu saw (something)' |
| uu + oo \rightarrow uuo | wààbúù óóréá | \rightarrow | wààbúúòréá | 'that Wambuu' |

The one combination we have found involving long $a a$ with another V : is consistent with our analysis of the aa+V examples above:

| aa $+\mathrm{ee} \rightarrow$ aعє | báà ééréá | \rightarrow | bá c̀réá |
| :--- | :--- | :--- | :--- |\quad| 'that dew' |
| :--- |
| |
| dàà ééréá |

The derivation of aa + ee \rightarrow aعє is explained as follows:
(53) Derivation of /baa eerea/ \rightarrow bacerea

Underlying form	baa eerea
Shortening of V+VV	baaerea
a+e $\rightarrow \varepsilon \varepsilon$	bac\&rea
Shortening of VV+V	N/A
Surface form	bacerea

We have elicited two combinations of identical V : +V :, and in both cases the surface form is V : (a single long V that does not sound 'over-long'):

$\varepsilon \varepsilon+\varepsilon \varepsilon \rightarrow \varepsilon \varepsilon$	mòđદ́દ̇ દ́દ́tìŕ	\rightarrow	mòđé'ćtìré	'Mũthee called'
$\mathrm{OO}+\mathrm{OO} \rightarrow \mathrm{OO}$	mòò óóréá	\rightarrow	móòréá	'that M. hildebrandtii tree'

This is as expected since we have rules that shorten a long V both before and after another V , so V : +V : first changes to V : +V and then to $\mathrm{V}+\mathrm{V}$ (and then fuses into a single long vowel).

The only other $\mathrm{V}:+\mathrm{V}$: combinations we have found involve $\varepsilon \varepsilon$ followed by another long V :

a.	$\varepsilon \varepsilon+\mathrm{aa} \rightarrow \varepsilon \mathrm{a}$	mòđćદ̀ áányònírè	\rightarrow	mòđć'ányònírè	'Mũthee saw me'
b.	$\varepsilon \varepsilon+\supset \supset \rightarrow$ eЈ	mòđćદ̇ ว́ónìrè	\rightarrow	mòđé'J́nìrè	'Mũthee saw (something)'
C.	$\varepsilon \varepsilon+\mathrm{oo} \rightarrow$ eo	mòđćદ̀ óóréá	\rightarrow	mòðéòréá	'that Mũthee'

(55b) and (55c) are consistent with the surface forms of all other types of combinations ($\mathrm{V}+\mathrm{V}, \mathrm{V}+\mathrm{V}:, \mathrm{V}:+\mathrm{V}$). (55a) behaves like $\varepsilon \varepsilon+a$ in failing to undergo the raising $(\varepsilon+a \rightarrow e a)$ that applies when ε is underlyingly short $(\varepsilon+a, \varepsilon+a a)$. This follows from our earlier claim that the raising rule targets only short ε and applies before the rule that shortens a long V_{1}.

5. Conclusion

In this paper we have attempted a comprehensive analysis of VHR effects in Kikuyu. A number of outstanding issues remain for future research.

First, we have not distinguished diphthongs from V sequences that cross a syllable boundary. We perceive that some VV sequences sound shorter than others (e.g., ei sounds short), suggesting they may be tautosyllabic while others are in separate syllables, but this is hard to distinguish and we have not identified a diagnostic for syllable membership.

Relatedly, we have not addressed the relationship of tone to VHR. Our transcriptions reflect some tone differences between slow and fast speech, but we have not made any claims about underlying tones. Clements \& Ford (1978: 317-
318) show how a rule of tonal absorption can distinguish between lexical items ending in a diphthong vs. heterosyllabic V.V sequences when they have a final LH tone pattern, but we have not yet been able to adapt this or any other tonal diagnostic for use in derived VV sequences originating across a word or morpheme boundary.

One interesting aspect of our findings is that the failure of long high vowels to undergo shortening suggests that VHR in general is not motivated by a pressure to produce optimal diphthongs. In theory, a high V (like any peripheral vowel) is an ideal start or end point for a diphthong since the accurate perception of a diphthong relies on there being sufficient distance between the two portions of the V , so it is perhaps unexpected that high vowels fail to shorten in order to form diphthongs when combined with other vowels.

Another matter of theoretical interest concerns the difference in outputs comparing V : +V sequences with $\mathrm{V}+\mathrm{V}$. In an OT account, the change of εa to ea cannot be straightforwardly driven by a markedness constraint * εa since [$\varepsilon a]$ is the correct output for $\varepsilon \varepsilon+a$. There would need to be a faithfulness constraint that preferentially protects the quality features of $\varepsilon \varepsilon$ over those of ε. The analytical challenge is that this preferential faithfulness is not manifested across the board but only relative to certain VHR rules (e.g., $\varepsilon \varepsilon$ does raise to e when it precedes o or ν). It is partly for this reason that we have opted for an analysis in terms of ordered rules.

References

Armstrong, Lilias E. 1940. The Phonetic and Tonal Structure of Kikuyu. London: Routledge.
Casali, Roderic F. 2011. Hiatus resolution. Pp. 1434-1460 in Marc van Oostendorp, Colin J. Ewen, Elizabeth, Hume, \& Keren Rice, eds. The Blackwell Companion to Phonology. Chichester: Wiley-Blackwell.
Clements, G. N. \& K. C. Ford. 1978. On the phonological status of downstep in Kikuyu. Pp. 309-357 in D. L. Goyvaerts, ed. Phonology in the 1970's. Ghent: Story-Scientia.
Kuzmik, Jackson. 2020. Vowel hiatus resolution in Kikuyu short vowels: An Optimality Theory analysis. BA thesis, Pomona College.
Mugane, John M. 1997. A paradigmatic grammar of Gĩkũyũ. Stanford: CSLI.

[^0]: ${ }^{1}$ We express our deep gratitude to Kĩmani Mbũgua for his patience and generosity as our language consultant. We are also grateful to the participants in the spring 2019 Field Methods class at Pomona College, especially Franco Liu, for their contributions, and to Dave Odden for helpful advice regarding Kikuyu phonology. All errors are our own.

[^1]: ${ }^{2}$ Note however that the number of combinations makes it impractical to study all 3-V sequences systematically. If any of the 14 long/short vowels can hypothetically precede all 49 combinations of short vowels across a word boundary, this yields $686 \mathrm{~V}_{1}+\mathrm{V}_{2} \mathrm{~V}_{3}$ combinations; multiply by 2 to include utterances where the boundary occurs instead after $\mathrm{V}_{2}\left(\mathrm{~V}_{1} \mathrm{~V}_{2}+\mathrm{V}_{3}\right)$, yielding 1372 combinations. Multiply by 2 to compare with the morpheme boundary context (within-word), yielding a total of 2744 unique combinations.

[^2]: ${ }^{3}$ The $a a$-final nouns we have identified (báá 'dew' and dàà 'louse') exceptionally resist shortening before u, for reasons we have not established. Due to the otherwise general shortening pattern and the small number of lexical items involved, we suspect this cell should be filled with au but do not have examples to confirm this.
 ${ }^{4}$ Our one oo-final noun, móó ' M. hildebrandtii tree', does not undergo shortening in any context. We hypothesize that there is something exceptional about this noun, and that if we are able to identify other nouns with final oo, they will undergo shortening.

[^3]: ${ }^{5}$ Other rules also apply as seen in the table, but in cases where the rule only affects V_{2}, we do not have to assume any particular ordering with the rule that shortens V_{1}, unless the rule is specified as only being triggered by a short V .
 ${ }^{6}$ See fn . 3 regarding the failure of $a a$ to undergo shortening.

