Wolof Universal Dependency Parsing

Bill Dyer

University of Florida

April 10th 2021

Hypothesis

Relative Clauses Copulas

Methods

Creating a new treebank The SpaCy Pipeline The MaltParser Pipeline

Results

Analysis

- North Atlantic Niger-Congo Language
- ▶ Lingua franca in Senegal (Mc Laughin, 2008)
- Wolof dominates spoken language
- French dominates writing, so the corpora of standardized written Wolof is small
- Sentences in the Wolof UD treebank are taken from websites

The Wolof UD Treebank

- The UD treebank annotation has 10 columns for each word:
 - number of the word in each sentence
 - word
 - lemma
 - universal part of speech
 - language-specific part of speech
 - features
 - number of the word that this word is a dependent of
 - dependency label
 - combination of dependency number and label
 - SpaceAfter word value (true or false)

The Wolof UD Treebank

- ► This study depends on the Wolof UD Treebank, created by Cheikh Bamba Dione (2019)
- ► In this study, I edit the language specific parts of speech, dependencies, and dependency labels
- ► I take the edited treebanks and build a parser moder with each
- Each model has a test and train treebank, and the training data goes through the parser
- ► The the accuracy of the training and test data is measured for Dione's baseline and each of the edited models
- Accuracy is compared to see which parser model was most accurate

Hypothesis

- Minimalist syntactic principles can inform Universal Dependency structures
 - Verbal morphology in Wolof does not act as a copular verb
 - Copulas are null in most copular constructions
 - Relative pronouns in headed relative clauses and free relative clauses represent the same functional head
 - Free relative clauses must contain null element

Hypothesis

- Dependency structures inspired by minimalist syntactic analysis can improve computational parsing of a language
 - Parser models trained on treebanks influenced by minimalist syntactic analysis will show improved accuracy from the baseline model

Hypothesis

Relative Clauses

Copulas

Methods

Creating a new treebank The SpaCy Pipeline The MaltParser Pipeline

Results

Analysis

Determiners

- (1) a. nit **k-i** person KClass-the 'the person'
 - b. *cin l-i* large.pot LClass-the 'the large pot'
 - c. cin y-a large.pot YClass-those'those large pots'
 - d. *jamono j-ooju*era JClass-that.far
 'that time long ago'

Headed Relative Clauses

- (2) a. *téere* **b-u** am solo book BClass-a has importance 'a book that is important'
 - b. làkk y-ii ñu nàmp language YClass-these they nurse
 'these languages here that they are raised speaking'
 - c. jiggéen-i Afrik **y-ooyu** dekkal women-of Africa YClass-those.far bring.back cosaan-i maam tradition-of grandparent

'those women of Africa there who bring back the traditions of their grandparents'

Free Relative Clauses

- (3) a. **k-i** leen taxawal-oon
 ClassK-the them stand.up.against-PAST
 'the one who stood up against them'
 - b. \tilde{n} -a ànd-oon ak Ablaay ClassÑ-those accompany-PAST with Abdoulaye Wàdd Wade

'those who accompanied Abdoulaye Wade'

Hypothesis

Relative Clauses

Copulas

Methods

Creating a new treebank The SpaCy Pipeline The MaltParser Pipeline

Results

Analysis

Copular Constructions

- (4) a. Kolle sama mag la.Kolle sama mag laKolle my older.sibling OBJ.FOCUS'Kolle is my OLDER SISTER"
 - Kolle mooy sama mag.
 Kolle mu-a-di sama mag
 Kolle she-SUBJ.FOCUS-is my older.sibling
 'KOLLE is my older sister'

Imperfect di

(5) a. Kànj la-a jënd. okra FOC-I sell

'I have sold OKRA.'

b. Kànj la-a-y jënd. okra FOC-I-am sell'I'm selling OKRA.'

- c. Abdu mu-a jënd kànj.
 Abdou he-FOC sell okra.
 'ABDOU has sold okra.'
- d. *Abdu mu-a-y jënd kànj*. Abdu he-FOC-is sell okra 'Abdu is selling okra.'

Hypothesis

Relative Clauses Copulas

Methods

Creating a new treebank

The SpaCy Pipeline
The MaltParser Pipeline

Results

Analysis

Headed Relative Clause Dependencies

(6) làkk yii ñu nàmp 'these languages here that they are raised speaking'

Free Relative Clause Dependency

(7) ki leen taxawaloon kilifa la woon 'the one they stood up against was a head of household"

Free Relative Clauses Reassigned with *mark* label

(8) ki leen taxawaloon kilifa la woon 'the one they stood up against was a head of household"

Headed Relative Clauses Reassigned with *mark* label

(9) làkk yii ñu nàmp 'these languages here that they are raised speaking'

Free Relative Clauses Reassigned with det label

(10) ki leen taxawaloon 'who they stood up against'

Headed Relative Clauses Reassigned with det label

(11) làkk yii ñu nàmp 'these languages here that they are raised speaking'

Copulas

Table: Tag assignment for select lemmas when not assigned COP

INFL		AUX		
Lemma	Function	Lemma	Function	
la da	Complement Focus Verbal Focus	ngi du	Progressive Aspect Negative	
daan	Past Habitual Aspect, focus clauses	daan	Past Habitual Aspect, non-focus clauses	
		di	Imperfect Aspect	

New Labels for Lemmas Previously Labeled Copulas

Table: Category reassigned to selected lemmas previously assigned COP

INFL		AUX		
Lemma	Function	Lemma	Function	
la da du	Complement Focus Verbal Focus Negative	ngi daan di	Progressive Aspect Past Habitual Aspect Imperfect Aspect	

Di copula with nominal complement

Ab taawam mooy Maam Moor Jaara Mbàkke 'HIS ELDEST CHILD is Maam Moor Jaara Mbakke'

eldest-his he FOC is Maam Moor Jaara Mbakke

Di copula with clausal complement

(13) Pecadom mooy fekk nit ki feebar ci këram. 'PECADOM finds people that are sick in their home.'

Pecadom mu a di fekk nit ki feebar ci kër-am Pecadom it FOC is find people that sick in house-their

Reassigned di copula with clausal complement

(14) Pecadom mooy fekk nit ki feebar ci këram. 'PECADOM finds people that are sick in their home.'

dislocated

Reassigned *di* copula with nominal complement

(15) Ab taawam mooy Maam Moor Jaara Mbàkke 'HIS ELDEST CHILD is Maam Moor Jaara Mbàkke'

Hypothesis

Relative Clauses Copulas

Methods

Creating a new treebank

The SpaCy Pipeline

The MaltParser Pipeline

Results

Analysis

SpaCy Parser Pipeline

- .conllu UD treebanks for all three models are converted to .json format
- Separate treebanks for train, development, and test
- Four treebank sets result in four parser models:
 - ▶ Baseline is the unedited treebank (Dione, 2019)
 - ► All definites given DEF part of speech tag, relative pronouns treated as complementizers
 - ► All definites given DEF part of speech tag, relative pronouns treated as determiners
 - ▶ COP tag replaced by alternate possible tag for each lemma

Hypothesis

Relative Clauses Copulas

Methods

Creating a new treebank The SpaCy Pipeline The MaltParser Pipeline

Results

Analysis

The MaltParser Parser Pipeline

- Consisted of two seperate tools: TreeTagger (Schmid, 1994) and MaltParser (Nilsson, 2008)
- ► The .conllu files only contained the word number, word form, lemma, universal POS tag, and Wolof POS tag for each word
 - all that could be produced by the tagger
- ► After a .conllu file was prepared for each model, it was used as input into MaltParser

Hypothesis

Relative Clauses Copulas

Methods

Creating a new treebank The SpaCy Pipeline The MaltParser Pipeline

Results

Analysis

Accuracy for UD labels and relations with corresponding parser pipeline

		spaCy UD	spaCy	Malt UD	Malt
Num.	Pipeline	Label	Univ.	Label	Univ.
			Dep.		Dep.
0	Baseline	76.4%	71.1%	72.7%	70.4%
1	DEF tag, RC	77.9%	71.7%	74.9%	72.9%
	pron as det				
2	DEF tag, RC	77.8%	71.4%	74.0%	73.2%
	pron as <i>mark</i>				
3	Copulas	77.4%	71.2%	73.9%	70.7%
	Relabeled				
4	Num. 1 +	78.0%	71.4%	76.1%	73.3%
	Num. 3				

Hypothesis

Relative Clauses Copulas

Methods

Creating a new treebank The SpaCy Pipeline The MaltParser Pipeline

Results

Analysis

Analysis

- Model that treats the relative pronoun as an extracted determiner, not complementizer, results in more accurate parsing
- Treating definites as one part of speech category improves parsing
- The copular analysis for verbal morphology does not seem to 'fit' Wolof
- Accuracy increased for both parser pipelines, so parser alone is not responsible for improvement

Hypothesis

Relative Clauses Copulas

Methods

Creating a new treebank The SpaCy Pipeline The MaltParser Pipeline

Results

Analysis

- Adopting a unified syntactic approach to verbal morphology and relative clauses improves accuracy in Wolof
- ► These improvements can inform future parsers of African languages

Future Research

- Build on Wolof Universal Dependency treebank with new data according to new labeling
- Creating Universal Dependency treebanks for languages with similar determiner/relative clause pronoun systems

References

- Bird, Steven, Edward Loper and Ewan Klein (2009),
 Natural Language Processing with Python. O'Reilly Media Inc.
- Eberhard, David M., Gary F. Simons, and Charles D. Fennig (eds.). 2020. Ethnologue: Languages of the World. Twenty-third edition. Dallas, Texas: SIL International. Online version: http://www.ethnologue.com.lp.hscl.ufl.edu.
- ▶ Dione, Cheikh Bamba (2019). Developing Universal Dependencies for Wolof. Third Workshop on Universal Dependencies (UDW, SyntaxFest 2019). Paris, France
- ► Ka, Omar (1994). Wolof Phonology and Morphology. University Press of America. Lanham, Maryland.

References

- Ka, Omar (1994). Nanu Dégg Wolof. National African Languages Resource Center. Madison, Wisconsin.
- Mc Laughlin, Fiona (2008). Senegal: The Emergence of a National Lingua Franca. In Simpson, Andrew (ed.), Language and National Identity In Africa, 79-97. Oxford: Oxford University Press.
- Nilsson, Jens and Joakim Nivre (2008). MaltEval: An Evaluation and Visualization Tool for Dependency Parsing. Sixth international conference on Language Resources and Evaluation, Marrakech, Morocco.
- Schmid, Helmut (1994): Probabilistic Part-of-Speech Tagging Using Decision Trees. Proceedings of International Conference on New Methods in Language Processing, Manchester, UK.
- ► Torrence, Harold (2013). The Clause Structure of Wolof. John Benjamins, Philadelphia.