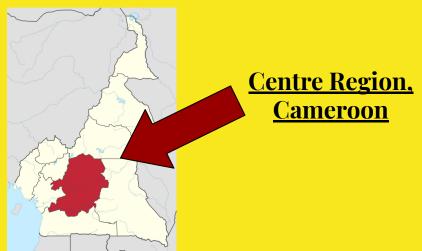
Acoustic Analysis of Plosives in the Rikpa' Language

Lindsay Hawtof, Fridah Gam, and Kathryn Franich

Rikpa Background

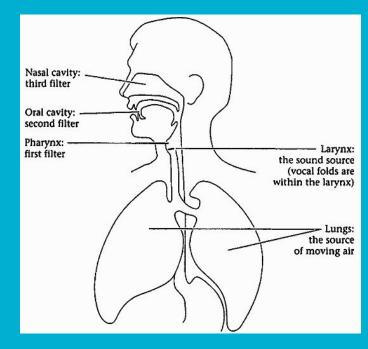
- Rikpa'/ kpā?/ Bafia
 - Bantu language
 - Region: A.53
- Classification: Niger-Congo»
 Atlantic-Congo» Volta-Congo»
 Benue Congo» Bantoid» Southern»
 Narrow Bantu» Northwest» A» Bafia
- **Speaking population:** approximately 25,000
- **Dialects:** Kpa, Bape, Bekpak, Ripey
- Additional languages: English and French



Geographical Background

- Spoken in Cameroon
- Centre Region: Mbam and Inoubou division
- Bafia, Kaliki, and Kon-Yambetta subdivisions
- North of Sanaga River
- Lefa, Yambeta, and Gunu languages surround Bafia

Cameroon


Centre Region

Republic of Cameroon

Egressive vs. Ingressive Mechanisms

- Pulmonic egressive sounds:
 - Air moves from the lungs through the larynx to create sound
 - Positive air pressure
- Glottalic ingressive sounds (implosives):
 - Larynx moves downward while oral cavity is closed
 - Negative air pressure buildup
 - Air moves inward through oral cavity
 - Ingressive airflow usually followed by egressive airflow to produce consonant

Rikpa' Consonants: Plosives and Implosives

- 25 contrastive consonants
- Two implosive consonants: **Bilabial [6] and alveolar [d]** (Hagege, 1975)
 - Can occur in both high and low tone environments
- Voiced and voiceless plosives: bilabial, alveolar, velar, labiovelar
- Near minimal pair examples:
 - **b**àm *bag*, **b**àn *town*, **p**án *dish*
 - đú fire, dúŋ mold, tú spit

<mark>Rikpa' Consonant IPA Chart</mark>

	Anterior		Central			Posterior	
ORAL	Bilabial	Labio- dental	Apical	Post- apical	Palatal	Velar	Labio- velar
Implosives	6		D (=				•
-voice +voice	⇒ ^p b	f v	$\Rightarrow d^{t}$	s z	c j	k g	kp gb
Continuants	w		1	r	у	Y	
NASAL	m		n		л	ŋ	

.

Implosives, Plosives, and Fundamental Frequency

Implosive Qualities:

- Ingressive to egressive airflow
 Higher velocity of airflow
 Higher for
 - Higher fo
- Lowered larynx during glottalic ingressive movement
 - Lower fo
- Stiffened vocal folds
 - Higher fo

Voiced vs. Voiceless Plosives

- Egressive airflow
 - Voiced plosive prevoicing
 - Lowered larynx
 - Lower fo
 - Voiceless plosives
 - No prevoicing
 - Higher fo

(Wright & Shryock, 1993; Bradshaw, 1997)8

Past Phonetic Findings

- Fundamental Frequency (fo): SiSwati (Bantu Region S.43)
 - fo of vowels following implosives, voiced, & voiceless plosives
 - Vowels following implosives higher than voiced, lower than voiceless
 - (Wright & Shryock 1993)
- Closure Duration: Mpiemo (Bantu Region A86); Guébie (Kru)
 - Implosive closure duration longer than voiced plosive
 - (Nagano-Madsen & Thornell 2012; Sande & Oakley 2020)
- Voicing Intensity: Mpiemo & Guébie Languages
 - Mean intensity between obstruents and sonorants; significant difference *(Sande & Oakley 2020)*
 - Implosives show increasing intensity slope during closure/prevoicing
 - Voiced plosives show decreasing intensity slope during prevoicing

Phonological Features of Implosives

- Catford's account: Implosives are in glottal obstruent class *(1939)*
- Many languages use modifications where the atmospheric pressure is zero, a little below, or not ingressive (*Ashby 1990*)
- Clements and Osu: Implosives as nonexplosive stops, absence of oral air pressure [-obstruent, -sonorant] (2002)
- Implosive acoustic patterns may give us insights into their phonology
 - Sonority hierarchy: Most sonorant (e.g. liquids) to least sonorant (e.g. plosives)
 - Closure duration and intensity correlate with resonance or sonority
 - (Sande & Oakley 2020)

Sande & Oakley (2020-2021) Findings

- Certain phonological patterning more characteristic of obstruent vs. sonorant-like implosives
 - Coda Syllable Position: Obstruent-like behavior
 - Prenasalization: Obstruent-like behavior
- Languages vary in how implosives pattern
 - Hausa: Obstruent-like
 - Guébie: Sonorant-like
 - Ikwere: Mixed (Clements & Osu, 2002)
- Gradient Feature Analysis:
 - Implosive features gradiently activated; between nasals and voiced fricatives

Unanswered Questions

- Implosive ambiguity
 - Variable acoustic patterning across languages in Sub-Saharan Africa
 - Potential differences in larynx lowering, glottal constriction, and vocal fold tension
 - Extends to phonological features
 - Closure duration and intensity correlate with sonority
 - Acoustic variability → unclear implosive features
 - Where do implosives fit on sonority hierarchy?
- Leads to the question...
 - How do implosives in Rikpa fit into the typological picture?

(Ladefoged 1968; Lindau 1984; Sande & Oakley 2020; Wright & Shryock 1993)

Research Questions...

1) How does **fundamental frequency** *(fo)* differ between Rikpa vowels following implosive, voiced, and voiceless egressive plosives?

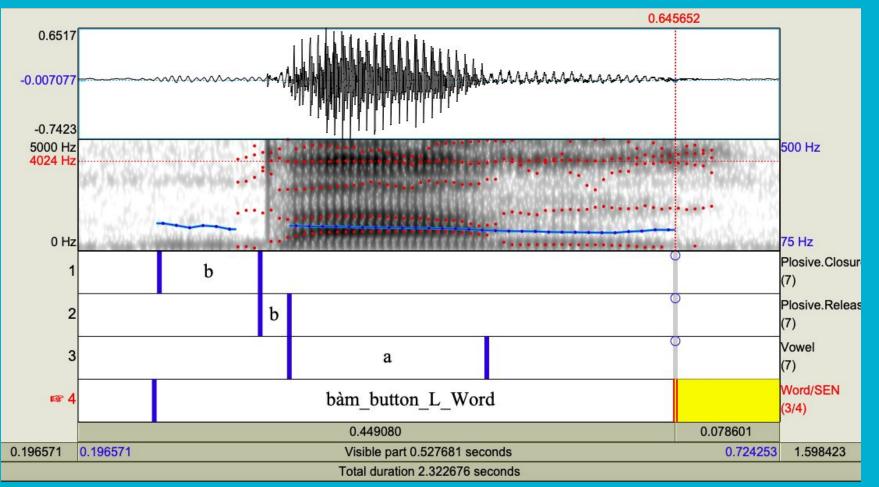
2) How does **closure duration** differ between Rikpa implosive, voiced, and voiceless egressive plosives?

3) How does **closure intensity** differ between Rikpa implosive, voiced, and voiceless egressive plosives?

Methodology

Vocabulary Stimuli Methodology

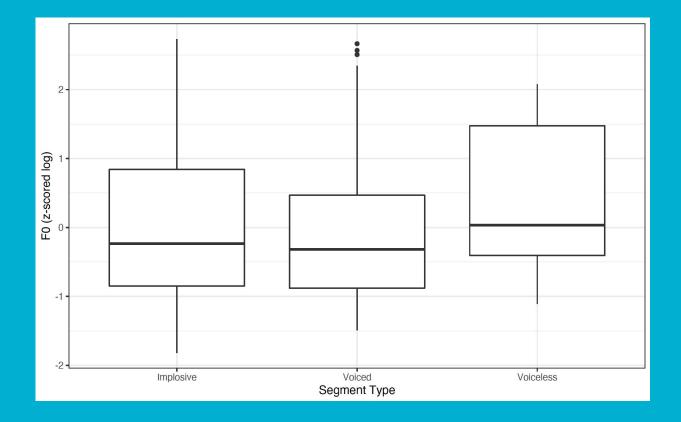
- Modified Swadesh list- Basic vocabulary often used in fieldwork
- **Consonant Criteria:** Initial and medial position
 - Implosives:[6] and [d]
 - Voiced plosives: [b] and [d]
 - Voiceless plosives: [p] and [t]
- Vowel Criteria: Variety of vowels qualities following target consonants
 - Front: [e], [i],
 - Mid: $[\bar{a}], [\epsilon], [\bar{i}]$
 - Back: [u], [a], [ɔ], [o]
- **Tonal Criteria:** High and low tones for each vowel

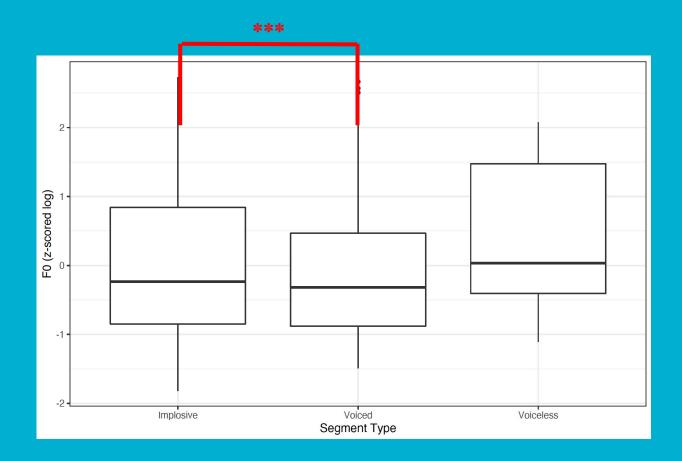

Word-Initia	al Position	Word-Medial Position			
High Tone	Low Tone	High Tone	Low Tone		
[d ú] <i>Fire</i>	[ɗ ùm] <i>Belly</i>	[RÌ d í] <i>To Eat</i>	[Ridù] To Struggle		
[d úŋ] <i>Mold</i>	[d ùŋ] <i>Bush</i>	[dɨ d úʀɨ] Tomorrow	[bɨ d ìlà?] Food		
[t éŋdÌ] <i>Mosq. Net</i>	[tìbí?] Excrements	[Rité?] To Take	[Ritùb] To pour from can		
[ɓ óŋá] <i>To Wait</i>	[b òRá] <i>Bra</i>	[RÌ ɓ óŋ] <i>To Wait</i>	[tɨ b òmí] <i>Brain</i>		
[b ú] <i>Dog</i>	[b ù] <i>Hole</i>	N/A	[kɨm b òŋ] <i>Prisoner</i>		
[p éj í] To Pay (Imperative Form)	[p ɨɣá] To Launch (Imperative Form)	[R ìp é] To Pay (Infinitive Form)	[R ìpì] To Launch (Infinitive Form)		

Methodology Continued

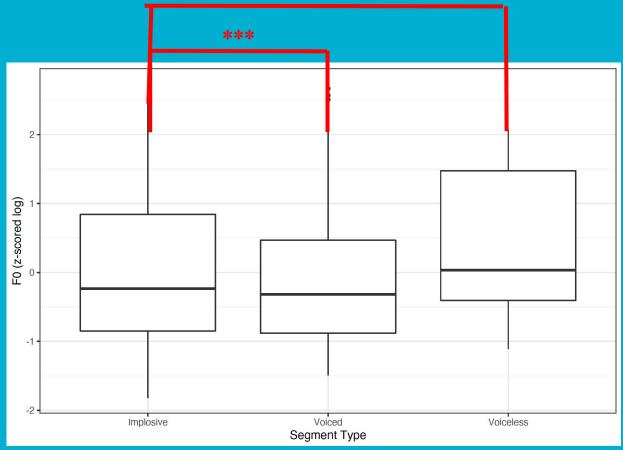
- Zoom elicitation sessions (1.5–2 hours) with Fridah
- Three female native Rikpa speakers recorded stimuli via Praat
- Three repetitions in isolation, three in sentence context per word

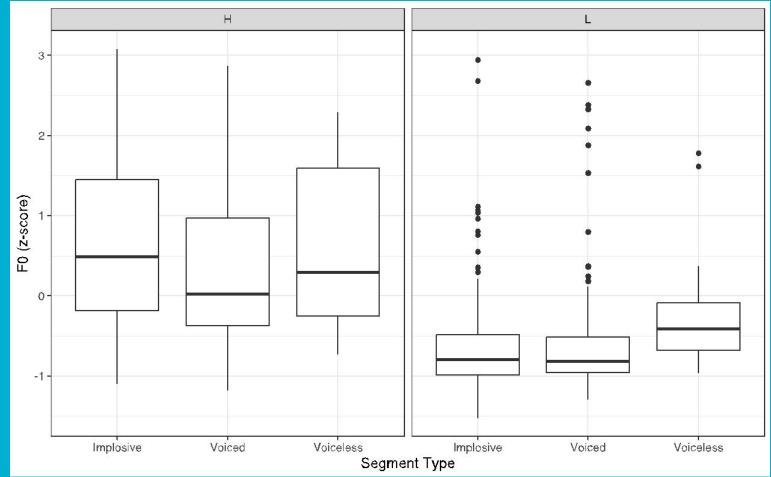
 - English translation: "Meat, meat, meat" "I saw a piece of <u>meat</u> at the market"
 - Combined data for analysis
- Segmented and annotated stimuli in Praat (4 categories)
 - Plosive Closure, Plosive Release, Vowel, Word/ Sentence Context
- Ran Praat scripts for fo, closure duration, and closure intensity

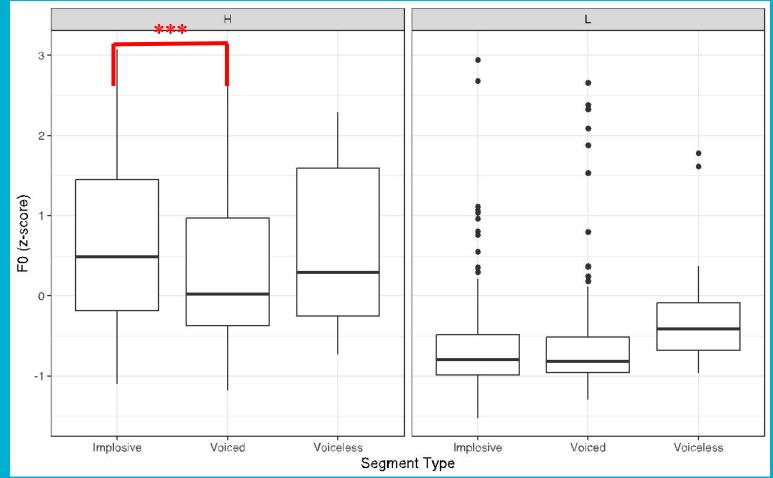

Praat Annotation Example...

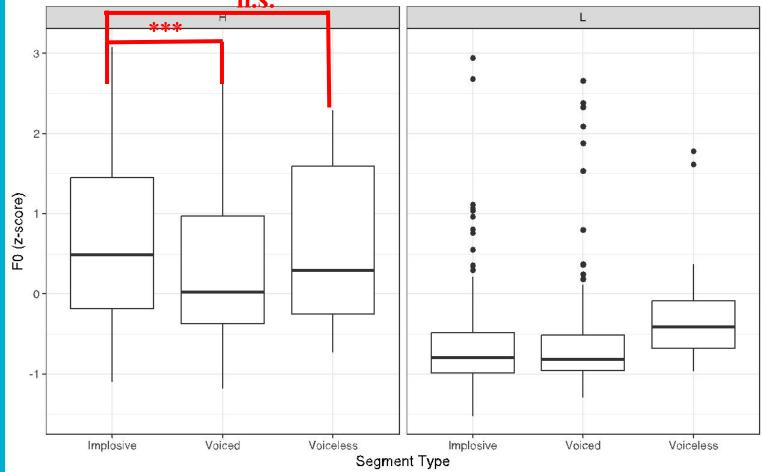

18

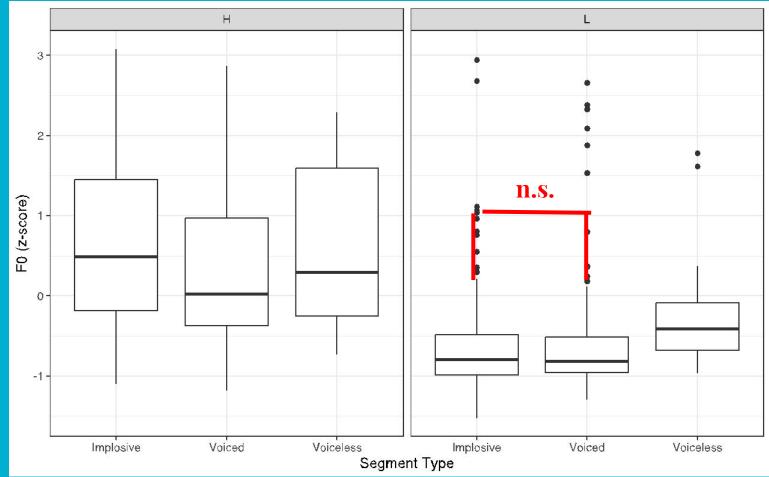
Results

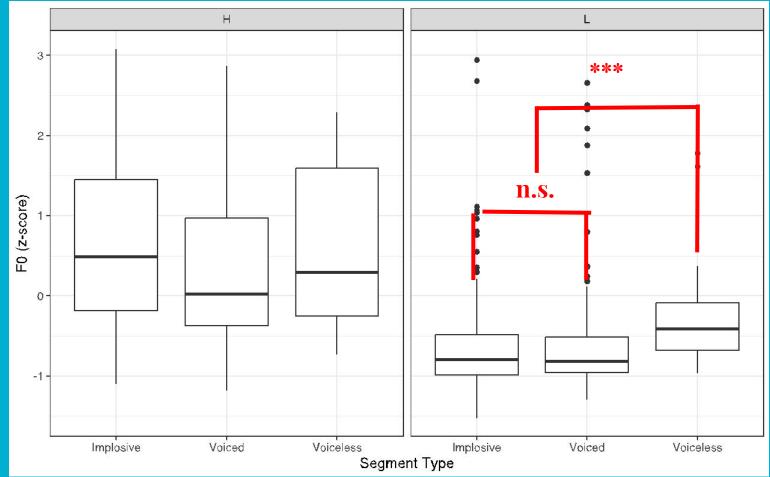

Overall Effects of Segment Type on FO

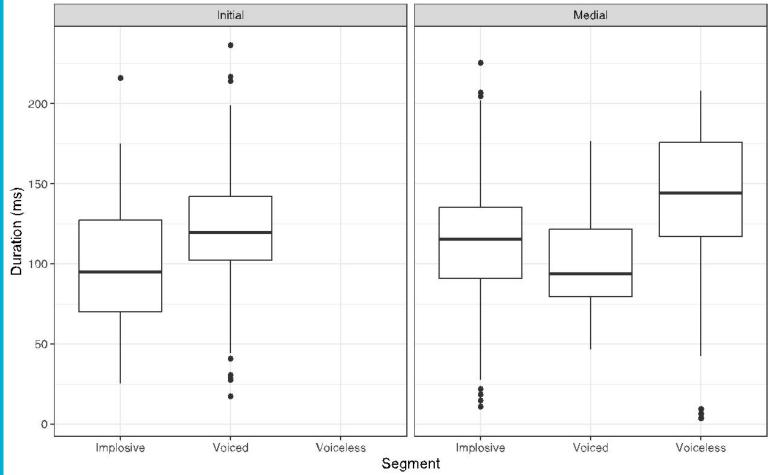


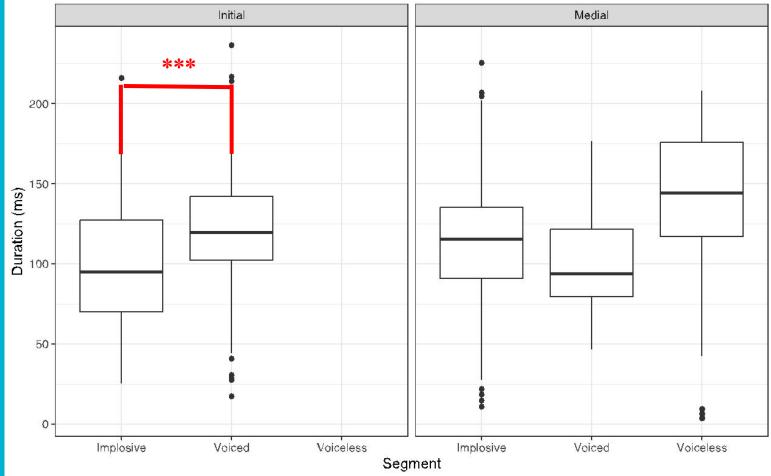

Overall Effects of Segment Type on FO

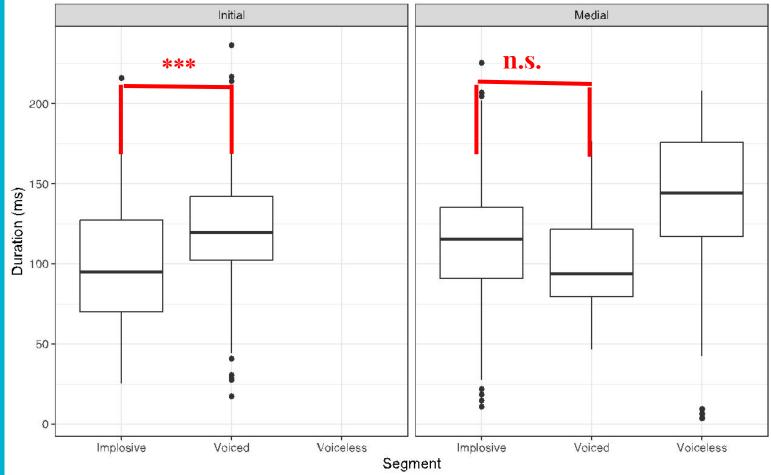


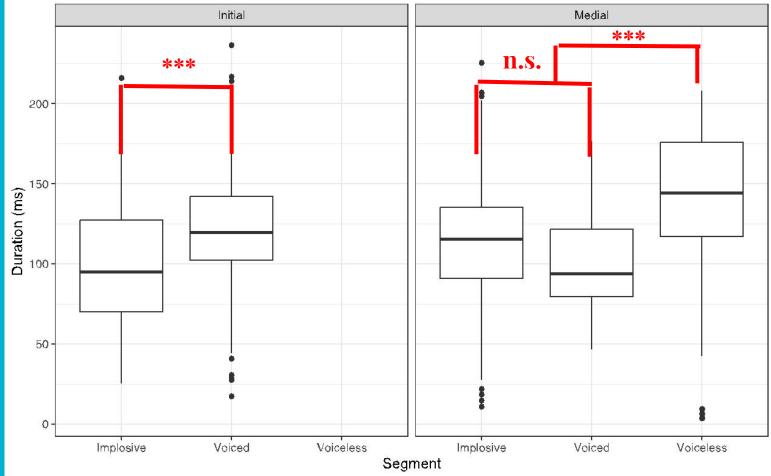

Overall Effects of Segment Type on FO

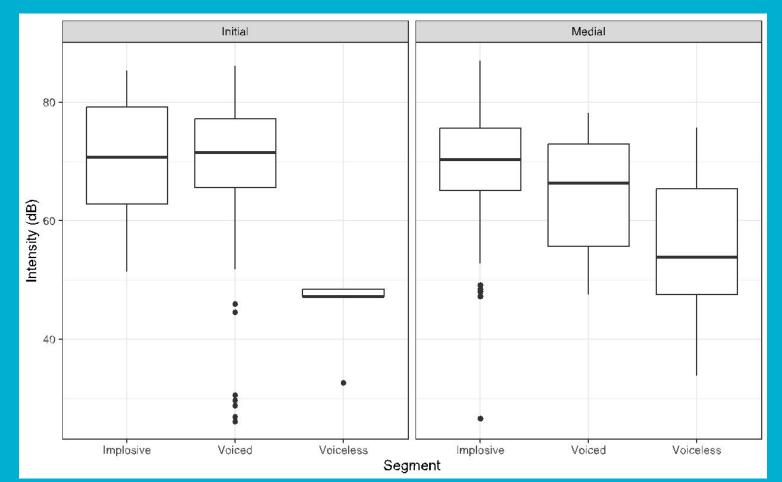


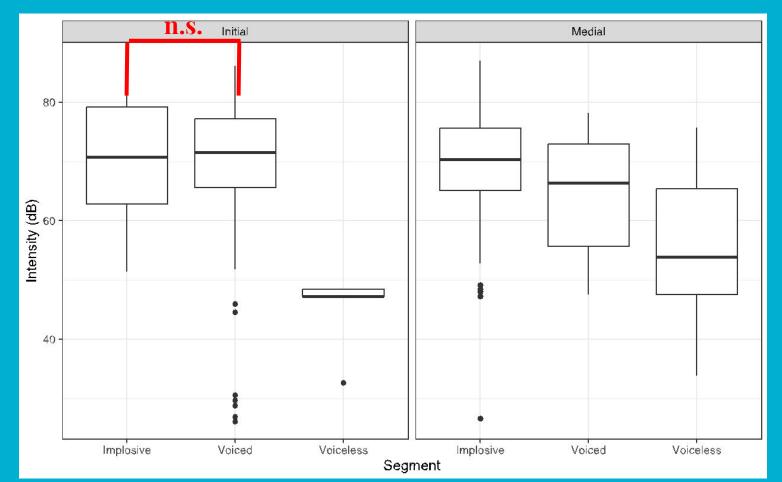




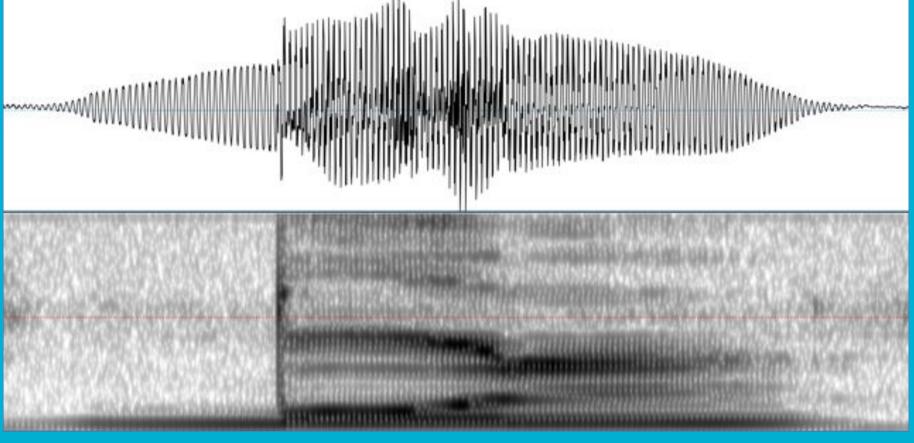




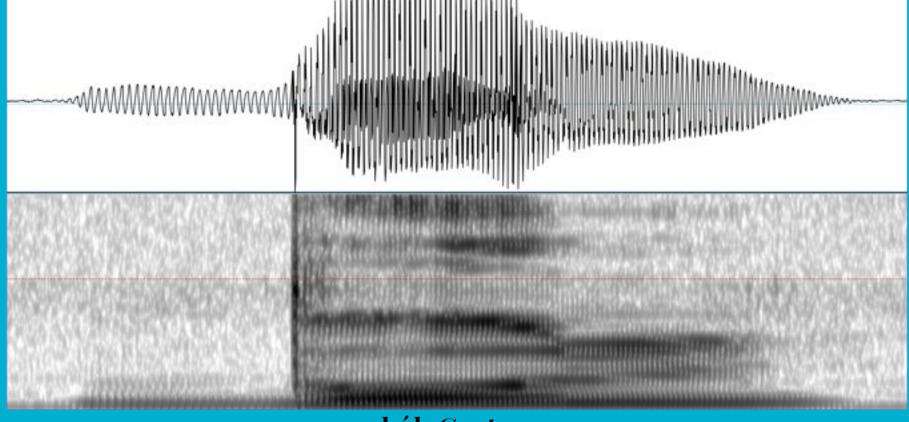



31

Intensity of Prevoicing by Segment Type and Position

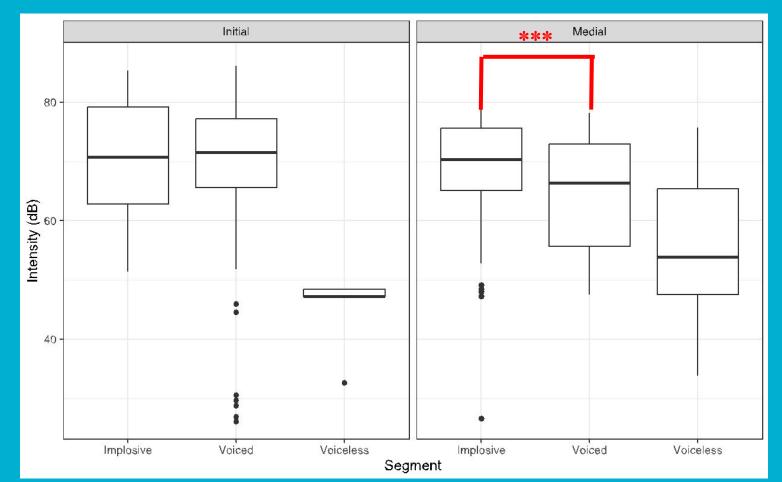

32

Intensity of Prevoicing by Segment Type and Position

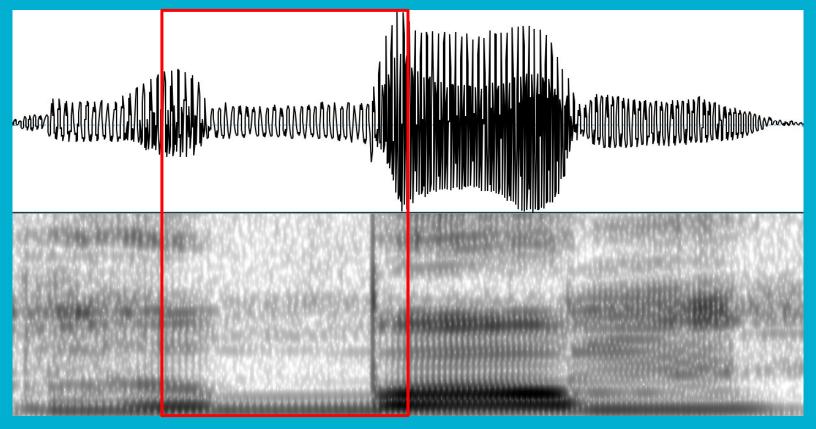


-33

Implosive Prevoicing Intensity Example



Voiced Plosive Prevoicing Intensity Example


búl Goat

Intensity of Prevoicing by Segment Type and Position

-36

Medial Implosive Prevoicing Intensity Example

Ribóm Furrow

Discussion

Summary of Results:

- Vowel Fundamental Frequency:
 - High Tone: Consistent with past findings: implosives higher than voiced; different from past findings: equal to voiceless
 - Low Tone: No difference between voiced and implosives; both lower than voiceless
- **Closure Duration:**
 - Initial Position: Implosives significantly shorter
 - Medial Position: Both implosives and voiced plosives shorter than voiceless
- Prevoicing Intensity:
 - Initial Position: No significant difference, but rising intensity slope for implosives
 - Medial Position: Implosives significantly higher, but no rise in intensity slope for implosives

Articulatory Features of Implosives

- Larynx lowering and airstream mechanism (Painter 1977)
 - Higher fo following implosive compared to voiced plosive
 - Rising intensity during implosive closure (initial position)
- Implosives pattern acoustically more like voiced plosives in medial position
 - Similar closure duration lengths
 - No rise in closure intensity (although implosive intensity still higher)
- Potentially more vocal fold tension during implosive production
 - Implosive and voiceless plosive similar fo in high tone environment
 - However, low tone environment shows this pattern of higher vocal fold tension is not consistent
- Difference in prevoicing duration could reflect difference in sonority
 - Guébe language showed longer durations than voiced plosives
 - Implosives patterned more with sonorants
 - Shorter duration could be phonetic marker of more obstruent-like qualities?

Phonological Qualities of Implosives

- Pattern more consistently with obstruents
 - Syllable position:
 - Implosives can occur in both onset and coda position along with plosives (e.g. bóŋá,tùb; bòm,kòp)
 - Most sonorants (/w/,/ʁ/,/j/) only occur in onsets; laterals and nasals are exceptions
 - **Prenasalization:**
 - Implosives and plosives can both be prenasalized (though so can most sonorants)

Conclusion

- Phonetic features shown through acoustic analysis:
 - Lowered larynx» rising intensity slope
 - Stiffened vocal folds» higher fo (more-so in high tone condition)
- Showed signs of more plosive-like behavior through acoustic measures:
 - fo in low tone conditions
 - Prevoicing duration and intensity slope in word-medial positions
- Phonological Observations:
 - Coda syllable position >> not all sonorants are seen in this position
 - Prenasalization» plosives prenasalized (though most sonorants are, too)
- Prediction: Rikpa implosives overall depict more obstruent-like behavior than sonorant-like behavior

References

Ashby, M. G. (1990). Articulatory possibilities for implosives. *Journal of the International Phonetic Association, 20*(2), 15-18. doi:10.1017/s0025100300004187

Bradshaw, M. M. (1997). A Phonology-Phonetics Mismatch: [Voice] in Consonant-Tone Interaction*. *Studies in Linguistic Sciences*, 27(1), 1–16.

Chavez-Peon, M. E. (2005). The effects of implosives and prenasalized stops on pitch in Shona. *The Journal of the Acoustical Society of America*, *117*(4), 2461–2461.

Clements, G. N., & Osu, S. (2002). Explosives, implosives and nonexplosives: The linguistic function of air pressure differences in stops. *Laboratory Phonology 7*, 299-350. doi:10.1515/9783110197105.299

Ladefoged, Peter. (1968). A phonetic study of West African languages: An auditory-instrumental survey. *Cambridge University Press.*

Lindau, M. (1984). Phonetic differences in glottalic consonants. Journal of Phonetics, 12, 147-155.

References (continued)

Nagano-Madsen, Y., & Thornell, C. (2012). Acoustic Properties of Implosives in Bantu Mpiemo. *Fonetik 2012: The XXVth Swedish Phonetics Conference May 30–June 1, 2012, 25,* 81–113.
Retrieved from

<u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.397.802&rep=rep1&type=pdf#page=81</u>
Painter, C. (1978). Implosives, inherent pitch, tonogenesis, and laryngeal mechanisms. *Journal of Phonetics*, 6, 249-274.

Sande, H., & Oakley, M. (2020, February). Representing Implosives: Gradient Features for

Ambiguous Segments* (1760302). Washington D.C., Washington D.C.: Georgetown University.

Wright, R., & Shryock, A. (1993). The effects of implosives on pitch in SiSwati. *Journal of the International Phonetic Association*, 23(1), 16-23. doi:10.1017/s0025100300004734