Variant Glide Repair Strategies in Kinyarwanda

Brandon Kieffer University of Minnesota, MA Student

1 Introduction

• Today's puzzle: Why does Kinyarwanda (Bantu, JD61) allow clusters of unusual sonority sequencing, while banning ones of common sequencing?

Example 1 Clusters of Unusual Sonority Sequencing

[u. mŋ áː.ʃe]	[ku. r ja]	[u.mú. tkw e]	
*mw	*bw	*tw	

- Kinyarwanda (JD61) is a Great Lakes Bantu language in a dialect continuum with neighboring Kirundi (JD62), and is an official language of Rwanda
- As we will see, these unusual clusters are underlyingly consonant-glide sequences, which rarely surface in the language
- I propose an OT analysis of this phenomenon where high-ranked markedness constraints militating against consonant-glide clusters yield a variety of repair strategies
- I will compare my analysis to Kochetov 2016's analysis of the same problem in Kirundi, and show that my analysis covers gaps in his analysis, and does so with fewer constraints

2 Licit Clusters in Kinyarwanda

- Kinyarwanda is a NoCoda language, so all clusters are onsets
- Glides only surface in clusters when following a back consonant (dorsal or laryngeal)
- Glides resolve and create typologically unusual clusters
- Allomorphic, orthographic, and comparative data support glides as the underlying form

<ubwoko></u	/u bu -oko/	[ú. bg óːko]	14-race	"race"
<kurwara></ku	/ku- rw ar-a/	[kú. rgw áː.ra]	INF-get.sick-FV	"to get sick"
<imyenda></i	/i m i-end-a/	[i. mɲ e∴nda]	4-cloth	"clothes"
<gusya></gu	/ku- se -a/	[gu. sc a]	INF-grind-FV	"to grind"

Example 2 Sample Changes

- Resolution methods are fortition, epenthesis, and palatalization
- Place of articulation of both consonants determines resolution method

2.1 Labial-Glide Clusters

- Labial-glide clusters resolve through fortition
- The left consonant determines the voicing and nasality of the fortified glide
- In labial-w clusters, /w/ loses its labial feature, but retains its dorsal place
- In all j-clusters, /j/ never changes its place of articulation

Example 3 Labial-Glide Clusters

[u.mjaje]	[u.	mŋ	lá∶.	[e]
-----------	-----	----	------	-----

[ku.**bı**aːra]

[u.mú.**fk**a]

Table 1Labial-Glide Clusters

UR	SR	Type of Change	UR	SR	Type of Change	UR	SR	Type of Change
/pw/	[pk]	GS	/fw/	[fk]	GS	/pj/	[pc]	GS
/bw/	[bg]	GS	/vw/	[vg]	GS	/bj/	[b]]	GS
/pfw/	[pfk]	GS	/mw/	[mŋ]	GS	/mj/	[mɲ]	GS

GS=Glide Strengthening (ie: fortition)

2.2 Coronal-Glide Clusters

- Coronal-w clusters resolve through epenthesis
- Coronal-j clusters resolve through fortition
- Epenthetic consonant is a velar occlusive of unspecified place and nasality
- The post-alveolars and the rhotic may be retroflex (Walker et al. 2008), but the exact nature of their pronunciation will not affect my rankings

Example 4 Coronal-Glide Clusters

Table 2	2 Coronal-Glide Clusters							
UR	SR	Type of Change	UR	SR	Type of Change	UR	SR	Type of Change
/tw/	[tkw]	Epen	/ʃw/	[ʃkw]	Epen	/tj/	[tc]	GS
/dw/	[dgw]	Epen	/ʒw/	[3gw]	Epen	/dj/	[d]]	GS
/sw/	[skw]	Epen	/tʃw/	[tʃkw]	Epen	/sj/	[sɟ]	GS
/zw/	[zgw]	Epen	/çw/	[çkw]	Epen	/nj/	[որ]	GS
/tsw/	[tskw]	Epen	/nw/	[nŋw]	Epen	/rj/	[t]	GS
/rw/	[rgw]	Epen	/ɲw/	[ɲŋw]	Epen			

GS=Glide Strengthening (ie: fortition), Epen=Epenthesis

2.3 Back-Glide Clusters

- Only back-w clusters undergo no change
- Back-j clusters resolve through palatalization
- Velars may optionally palatalize in front of front vowels as well

Example 5 Back-Glide Clusters

[u.**kw**á∴ʃe]

[ku.**,**aːra]

[u.mú.**hw**a]

Table 3Back-Glide Clusters

UR	SR	Type of Change	UR	SR	Type of Change	UR	SR	Type of Change
/kw/	[kw]	No	/gw/	[gw]	No	/hw/	[hw]	No
/kj/	[C]	Pal	/gj/	[1]	Pal	/hj/	[ç]	Pal

Pal=Palatalization, No=No change

2.4 Summary

- Back-j palatalize
- Back-w do not change
- Coronal-w epenthesize
- The rest fortify

UR	SR	Type of Change	UR	SR	Type of Change	UR	SR	Type of Change
/pw/	[pk]	GS	/tw/	[tkw]	Epen	/tj/	[tc]	GS
/bw/	[bg]	GS	/dw/	[dgw]	Epen	/dj/	[d]]	GS
/fw/	[fk]	GS	/sw/	[skw]	Epen	/sj/	[s]]	GS
/vw/	[vg]	GS	/zw/	[zgw]	Epen	/nj/	[nɲ]	GS
/pfw/	[pfk]	GS	/ʃw/	[ʃkw]	Epen	/rj/	[t]	GS
/mw/	[mŋ]	GS	/ʒw/	[3gw]	Epen	/kw/	[kw]	No
/pj/	[pc]	GS	/çw/	[çkw]	Epen	/gw/	[gw]	No
/bj/	[b]]	GS	/tsw/	[tskw]	Epen	/hw/	[hw]	No
/mj/	[mɲ]	GS	/tʃw/	[tʃkw]	Epen	/kj/	[c]	Pal
			/nw/	[nŋw]	Epen	/gj/	[1]	Pal
			/ɲw/	[ɲŋw]	Epen	/hj/	[ç]	Pal
			/rw/	[rgw]	Epen			

 Table 4
 Glide Clusters by Resolution Method

GS=Glide strengthening (ie: fortition), , Epen=Epenthesis, Pal=Palatalization, No=No change

• The method of resolution is different when the direct causative /-j-/, nominalizer /-ji/, or perfective /-je/ is in the cluster. See appendix for more information.

2.5 Sonority Sequencing of Glide-Clusters

- Glide clusters come in five different sonority sequences
- It is typologically unusual to allow more even and falling clusters than raising (Clements 1990)

	Even	Fallin	g	Rai	sing	Even-	Raising	Falling	Raising
pk	bg	fk	vg	kw	gw	tkw	dgw	skw	zgw
рс	pł	sc		h	W	n	ŋw	ſkw	здм
tc	dì	pfk				л	ŋw	çl	ŚŴ
	mŋ	ιì						ts	kw
	тр							tſI	<w style="text-decoration-color: blue;">KW</w>
	որ							ŗ	jw

 Table 2
 Kinyarwanda Glide Clusters by Sonority

3 Analysis

- The rankings need to prevent glides from surfacing in clusters, except for in back-w clusters, and need to choose the correct resolution for the different consonant-glide pairings
- I propose two markedness constraints *Back+Pal and *Front+Glide, which interact with faithfulness constraints to resolve clusters in back-j and front-glide clusters respectively
 - I have devised these constraints by modifying Kochetov 2016's *Dor+Pal,
 *Lab+Vel, *Lab+Pal, etc., into two unified constraints for each glide

Example 6 Markedness Constraints

- ▶*Front+Glide : Assign a mark for every front consonant followed by a glide
- ▶*Back+Pal : Assign a mark for every back consonant followed by a palatal consonant
- Fortition involves a change in [±consonantal] (glides are [-consonantal], nasals and stops are [+consonantal]) so we will use Ident[Consonantal] as the faithfulness constraint in fortition
- For palatalization and epenthesis, we will use the faithfulness constraints Ident[Palatal] and Dep

Example 7 Faithfulness Constraints

- ►Ident[Consonantal] : Assign a mark for every sound in the input whose corresponding segment in the output has a different value for [±consonantal]
- ►Ident[Palatal] : Assign a mark for every sound in the input whose corresponding segment in the output has a different value for [±palatal]

►Dep : Assign a mark for every segment in the output without a corresponding segment in the input

3.1 Palatalization

/ku-ke-a/	*Back+Pal	Ident[Palatal]
[gú.kja]	*!	
☞ [gú.ca]		*

Tableau 1 *Back+Pal>>Ident[Palatal]

3.2 Fortition

Tableau 2 *Front+Glide>>Ident[Consonantal]

/ubu-oko/	*Front+Glide	Ident[Consonantal]
[ú.bwó∴ko]	*!	
lise [ú.bgó∴ko]		*

Tableau 3 *Back+Pal>>Ident[Consonantal]

/ku-tjo/	*Front+Glide	*Back+Pal	Ident[Consonantal]
[gú.tjo]	*!		
[gú.tkjo]		*!	
☞ [gú.tco]			*

3.3 Epenthesis

Tableau 4Ident[Consonantal]>>Dep

/umu-twe/	*Front+Glide	Ident[Consonantal]	Dep
[u.mú.twe]	*!		
[u.mú.tke]		*!	
🥃 [u.mú.tkwe]			*

Tableau 5Incorrect Output

/ubu-oko/	*Front+Glide	Ident[Consonantal]	Dep
[ú.bwóː.ko]	*!		
! [ú.bgó∴ko]		*!	
☞ [ú.bgwóː.ko]			*

- The rankings in Tableau 5 produce the wrong output in Tableau 6. We will rectify this by introducing an OCP constraint that forces the /w/ in labial-w clusters to fortify
- I will be using local conjunction to express my OCP constraint, à la Alderete 1997.

Example 8 OCP Constraint

►*Labial²_{σ} : Assign a mark for each syllable that has more than one [+labial] consonant

/ubu-oko/	*Front+Glide	*Labial ² $_{\sigma}$	Ident[Consonantal]	Dep
[ú.bwóː.ko]	*!	*!		
☞ [ú.bgóː.ko]			*	
[ú.bgwóː.ko]		*!		*

Tableau 6 *Labial²_{σ}>>Ident[Consonantal]

3.4 Summary

- *Back+Pal >> Ident[Palatal]
- *Front+Glide, *Labial²_σ, *Back+Pal >> Ident[Consonantal]>>Dep

*** Ident[Palatal] and *Back+Pal can never be violated by w-clusters, so they are not included in Summary Tableaux 1-3 for simplicity ***

Summary Tableau	1 Labial-W			
/ubu-oko/	*Front+Glide	*Labial ² $_{\sigma}$	Ident[Cons]	Dep
☞ [ú.bgóː.ko]			*	
[ú.bgwó∷ko]		*!		*
[ú.bwóː.ko]	*!	*!		

/umu-twe/	*Front+Glide	*Labial ² $_{\sigma}$	Ident[Cons]	Dep
[u.mú.tke]			*!	
☞ [u.mú.tkwe]				*
[u.mú.twe]	*!			

Summary Tableau 2 Coronal-W

Summary Tableau 3 Back-W

/uku-aʃe/	*Front+Glide	*Labial ² $_{\sigma}$	Ident[Cons]	Dep
[u.kká∴ʃe]			*!	
[u.kkwá∴ʃe]				*!
☞ [u.kwá∴ʃe]				

***Our OCP constraint, *Labial²_{σ} can never be violated by j-clusters, so it is not included in Summary Tableaux 4-6 for simplicity ***

Summary	Tableau 4	Labial-J

/ku-bjar-a/	*Front+Glide	*Back+Pal	Ident[Pal]	Ident[Cons]	Dep
িজ [ku.bֈa∴ra]				(*)	
[ku.bga∴ra]		*!			*
[ku.bja∴ra]	*!				
[ku.ja∴ra]			*!	(*)	

Summary Tableau 5 Coronal-J

/ku-tjo/	*Front+Glide	*Back+Pal	Ident[Pal]	Ident[Cons]	Dep
☞ [gú.tco]				(*)	
[gú.tkjo]		*!			*
[gú.tjo]	*!	1 1 1 1		1 1 1 1	
[gú.co]			*!	(*)	

/gu-ke-a/	*Front+Glide	*Back+Pal	Ident[Pal]	Ident[Cons]	Dep
[gú.kca]		*!		*	
[gú.kkja]		*!			*
[gú.kja]		*!		1 1 1 1	
☞ [gú.ca]			*	*	

Summary Tableau 6 Back-J

4 Kochetov 2016's Analysis

- Kirundi has the same phenomena, and has the same pattern of resolution
- To express the rules against glide clusters, Kochetov 2016 uses 7 constraints instead of my 2
- He considers velar-glide sequences to be complex segments (k^w), not sequences (kw)
- Treats cases of epenthesis in coronal-w clusters as glide strengthening
- As his rankings for j-clusters work perfectly fine, we will only be looking at the w-clusters and their rankings

Example 9 Kochetov 2016's Tableaux

(32) Post-consonantal glide strengthening in the /m/ + /w/ sequence (see (28a)).

	/am ₁ -w ₂ a/	*Dor +pal	Morph Uniform	*Cor +pal	Uniform -IO	*Lab + vel	*Cor + vel	Agree[F] -CC	*Dor + vel
<u> </u>				-				و باد باد	
a.	am ₁ w ₂ a					*		**!	
b.	aŋ _{1,2} ^w a				*!				
c.	° am₁ŋ₂a					*			

(33) Post-consonantal glide strengthening in the /s/ + /w/ sequence (see (28b)).

	/as ₁ -w ₂ a/	*Dor	Morph	*Cor	Uniform	*Lab	*Cor	Agree[F]	*Dor
		+pal	Uniform	+ pal	-IO	+ vel	+ vel	-CC	+ vel
a.	as ₁ w ₂ a						*	***!	
b.	ax _{1,2} ^w a				*				
c.	♂ ask ^w a						*		

Example 10 Agree[F]-CC Definition

(15) Agree[F]-CC: Consonants/glides in a cluster have the same values for consonantality, sonorancy, nasality, and voicing ([±consonantal, ±sonorant, ±nasal, ±voice]).

- *Dor+Pal, MorphUniform, and *Cor+Pal are all used in his j-cluster rankings, and are irrelevant here
- In lieu of my *Front+Glide, he has a markedness constraint for each of the three places of articulation, and ranks the front ones above Agree[F]-CC and the back one below it
- No explanation is provided for why /w/ in 32c loses its labial place (lacks OCP)
- Rankings make no distinction between labial-w and coronal-w clusters, in spite of the differences in their realizations
- When given the "no change" /kw/ clusters, these rankings give the wrong answer

	<u> </u>								
	/ku-teek ₁ -w ₂ -a/	*Dor +pal	Morph Unifor m	*Cor +pal	Uniform -IO	*Lab +vel	*Cor +vel	Agree[F] -CC	*Dor +vel
a.	guteːk ₁ w ₂ a							***!	*
b.	gute:x _{1,2} wa				*!				
C.	☞ gute:kk ^w a								*
d.	! gute:k _{1,2} wa				*!				

Tableau 7Kochetov's Ranking with Velars

- Actual output is (d), [gute:kwa], but Kochetov's rankings select (c) [gute:kkwa] instead
- Uniformity eliminates the correct candidate
- Summary
 - Kochetov 2016 accounts for j-clusters
 - The rankings cannot distinguish the differences between labial-w and coronal-w clusters
 - Rankings give the wrong output when the input is a back-w cluster

5 Conclusion

- Kinyarwanda's unusual clusters depart from the Sonority Sequencing Principle due to high ranking marked constraints against glide clusters and faithfulness constraints that preserve some of the underlying glides' features
- Three resolution methods are used to avoid glide-clusters: epenthesis, fortition, and palatalization
- The resolution method is determined by the place of articulation of the glide and the consonant
- With the markedness constraints *Front+Glide, *Back+Pal, and *Labial²_σ, I can motivate the changes
- My rankings can produce the correct output for all consonant-glide pairings

6 Appendix

- Kirundi and Kinyarwanda both have a separate resolution system for j-clusters that contain certain suffixes
- In Kinyarwanda these suffixes are the direct causative /-j-/, the nominalizer /-ji/, and the
 perfective /-je/
- Kochetov 2016 attributes this difference to whether the cluster consists of one morpheme or multiple, and I concur
- Part of the Bantu-wide phenomena of super-close vowels from PB causing spirantization (Janson 2007)
- In Kinyarwanda, some lingual phones undergo a chain shift towards being a palatal fricative
- Other lingual phones delete or undergo epenthesize
- Labial and nasal phones do not differ between tautomorphemic and heteromorphemic cluster

Spirantization	Palatalization	No Change
/t-je/=>[se]	/s-je/=>[∫e]	/ʃ-je/=>[ʃe]
/d-je/=>[ze]	/z-je/=>[3e]	/ʒ-je/=>[ʒe]
/k-je/=>[tse]	/h-je/=>[çe]	/ç-je/=>[çe]
/g-je/=>[ze]		/j-je/=>[je]
/tʃ-je/=>[ʃe]		

Example 11 Perfective Chain Shift

- /...r-je/ has three different outputs, depending on the word: [...ze], [...je], or [...rije]
- Monosyllabic verbs stems (CV) undergo no change, and the perfective just attaches as [-je]
- When the direct causative /-j-/ and perfective /-je/ both occur next to each other, they combine into [-iʒe]
 - My current hypothesis is that this is suppletion
 - [-iʒe] occurs as the perfective form on some verbs even when there is no evidence of a direct causative

7 Sources

* Kinyarwanda words shown come from a combination of Kimenyi 1979 and my fieldwork

* Kirundi words shown all come from Kochetov 2016

- Alderete, J. (1997). Dissimilation as local conjunction. In *North East Linguistics Society* (Vol. 27, No. 1, p. 3).
- Bastin, Y. (2006). The Interlacustrine Zone (Zone J). In D. Nurse & G. Philippson (Ed.) *The Bantu Languages* (501-528). Routledge.
- Bostoen, K. (2008). Bantu spirantization: Morphologization, lexicalization and historical classification. *Diachronica*, *25*(3), 299-356.
- Clements, G. N. (1990). The role of the sonority cycle in core syllabification. In J. Kingston & M. Beckman (eds.) Papers in laboratory phonology I: between the grammar and physics of speech. Cambridge: Cambridge University Press. 282–333.
- Demolin, D. (2016). Clicks, stop bursts, vocoids and the timing of articulatory gestures in Kinyarwanda. *Studies in African Linguistics*, *45*(1 & 2), 141-160.
- Janson, T. (2007). Bantu spirantisation as an areal change. Africana Linguistica, 13(1), 79-116.

Kimenyi, A. (1979). Studies in Kinyarwanda and Bantu phonology (Vol. 33). Linguistic Research.

Kimenyi, A. (1980). A relational grammar of Kinyarwanda (Vol. 91). Univ of California Press.

Kinyarwanda-English Dictionary. Retrieved April 2021. From Kinyarwanda.net

Kochetov, A. (2016). Palatalization and glide strengthening as competing repair strategies: Evidence from Kirundi. *Glossa: a journal of general linguistics*, *1*(1), 14.

Maddieson, I. (2003). The sounds of the Bantu languages. The Bantu Languages, 15, 41.

- Mpiranya, F., & Walker, R. (2005). Sibilant harmony in Kinyarwanda and coronal opacity. *Talk handout, GLOW, 28*.
- Walker, R., Byrd, D., & Mpiranya, F. (2008). An articulatory view of Kinyarwanda coronal harmony. *Phonology*, *25*(3), 499
- Walli-Sagey, E. (1986). On the Representation of Complex Segments and their Formation in Kinyarwanda. *Studies in Compensatory Lengthening*, 23, 251.
- Zoll, C. (1995). Consonant mutation in Bantu. *Linguistic inquiry*, 536-545.